Redis安装异常解决办法

官网地址:http://redis.io/

官网下载地址:http://redis.io/download

 

1. 下载Redis源码(tar.gz),并上传到Linux

2. 解压缩包:tar zxvf redis-2.8.17.tar.gz

3. 进入解压缩后的文件夹:cd redis-2.8.17

4. 编译源码:make

(1)若出现如下提示,则说明未安装gcc,使用命令安装gcc:yum install gcc

[root@localhost redis-2.8.17]# make
cd src && make all
make[1]: Entering directory `/root/redis-2.8.17/src    CC adlist.o
/bin/sh: cc: command not found
make[1]: *** [adlist.o] Error 127
make[1]: Leaving directory `/root/redis-2.8.17/srcmake: *** [all] Error 2

(2)若出现如下提示,则将make改为make MALLOC=libc,推测是因为编译库的问题。

[root@localhost redis-2.8.17]# make
cd src && make all
make[1]: Entering directory `/root/redis-2.8.17/src    CC adlist.o
In file included from adlist.c:34:
zmalloc.h:50:31: error: jemalloc/jemalloc.h: No such file or directory
zmalloc.h:55:2: error: #error "Newer version of jemalloc required"
make[1]: *** [adlist.o] Error 1
make[1]: Leaving directory `/root/redis-2.8.17/srcmake: *** [all] Error 2

5. 安装编译后的文件:make install,redis可执行文件将被复制到/usr/local/bin/,但没有配置,手动复制配置:cp redis.conf /usr/local/bin

6. 设置Redis密码,编辑刚刚复制的配置文件:vi redis.conf,解除requirepass参数的注释,并设置值,例如:requirepass ljx520

7. 使用配置文件启动Redis数据库:./redis-server redis.conf

如果看到如下的界面,那么恭喜你,Redis已安装成功


<think>嗯,用户问的是Redis缓存穿透的解决办法。首先我得回忆一下缓存穿透是什么。缓存穿透是指查询一个不存在的数据,这时候请求会直接打到数据库,导致数据库压力过大。常见的解决办法有几个,比如布隆过滤器、缓存空值、限流之类的。不过得仔细想想每个方法的细节,确保正确性。 首先,布隆过滤器。用户可能不太了解这个,需要简单解释一下。布隆过滤器可以快速判断一个key是否存在,如果不存在就直接返回,避免查数据库。但要注意布隆过滤器有误判的可能,可能会把存在的key误判为不存在,这时候需要处理吗?其实,布隆过滤器返回存在的话,可能存在也可能不存在,但返回不存在的话,就一定不存在。所以用在缓存穿透的情况下,如果布隆过滤器说没有,就直接挡掉,这样就能防止无效请求。但需要提前预热所有可能的key到布隆过滤器中,这可能对某些场景不太适用,比如动态生成的key。 然后是缓存空对象。当查询数据库不存在时,把空值或者特定的标记缓存起来,并设置较短的过期时间。这样下次同样的请求过来时,就直接返回空值,不会打到数据库。不过需要考虑缓存空对象的内存占用,以及如果大量不同的无效key被缓存,可能导致内存浪费。这时候可能需要设置较短的过期时间,或者定期清理。 接下来是限流和熔断。当检测到大量无效请求时,通过限流组件限制请求频率,或者直接熔断,避免数据库崩溃。这需要结合具体的限流工具,比如Redis自己的限流功能,或者使用其他中间件如Sentinel。不过这可能影响正常用户的体验,所以需要权衡。 还有用户校验,比如对参数进行合法性检查。例如,如果查询的ID是负数或者格式不对,直接拦截。这在业务层处理,减少无效请求进入缓存和数据库的机会。不过这种方法只能处理一部分明显的无效请求,对于符合格式但实际不存在的key,就无效了。 另外,异步更新缓存也是一种方法。当缓存失效时,不是直接去查数据库,而是通过消息队列异步更新,避免大量请求同时打到数据库。这需要系统设计上的支持,可能比较复杂。 需要检查这些方法是否有遗漏或者错误的地方。比如布隆过滤器的误判率,是否需要结合其他方法使用?比如缓存空对象和布隆过滤器可以一起用,提高效率。还有,是否应该考虑热点数据的处理?比如对于某些频繁请求的key,即使不存在,也要特别处理。 另外,要注意每种方法的适用场景。比如布隆过滤器适合有固定key集合的情况,而缓存空对象适合动态key但重复请求的情况。限流则是在极端情况下的保护措施。 可能用户想知道具体实现步骤或者示例代码?不过用户没有明确要求,所以应该以解释概念和方法为主。另外,需要确保回答结构清晰,分点说明,方便用户理解。 总结下来,解决办法主要有布隆过滤器、缓存空对象、限流熔断、参数校验、异步更新这几个方面。每个方法都需要简要说明原理和注意事项,帮助用户全面了解。同时要提醒用户根据实际业务情况选择合适的方案,或者结合多种方法使用。</think>Redis缓存穿透是指**恶意或无效的查询请求绕过缓存直接访问数据库**,导致数据库压力激增。以下是逐步解决方案: --- ### 一、缓存穿透的核心原因 - 请求的**Key在数据库和缓存中均不存在**(如恶意构造非法ID)。 - 大量此类请求导致数据库频繁无效查询。 --- ### 二、解决办法及实现逻辑 #### 1. 布隆过滤器(Bloom Filter) - **原理**:通过位数组和哈希函数预存所有合法Key的标记,拦截非法Key的请求。 - **实现步骤**: 1. 将所有合法Key存入布隆过滤器。 2. 请求到达时,先用布隆过滤器检查Key是否存在: - 若不存在 → 直接返回空,屏蔽数据库查询。 - 若存在 → 继续查询缓存或数据库。 - **注意事项**: - 布隆过滤器存在**误判率**(需调整哈希函数数量和数组大小)。 - 需定期同步数据库与过滤器的数据(如通过异步任务)。 #### 2. 缓存空对象(Null Caching) - **原理**:即使数据库无数据,也缓存一个空值或特殊标记。 - **实现步骤**: 1. 查询数据库未命中时,向Redis写入空值(如`SET key_null "" EX 300`)。 2. 后续相同请求直接返回空值,避免穿透。 - **注意事项**: - 空值需设置**较短过期时间**(如5分钟),避免长期占用内存。 - 需处理缓存和数据库的**数据一致性问题**(例如数据库新增数据后需删除空值标记)。 #### 3. 限流与熔断 - **原理**:通过限制异常请求频率保护数据库。 - **实现步骤**: 1. 使用限流工具(如Redis的`INCR`+`EXPIRE`或令牌桶算法)统计高频无效Key请求。 2. 触发阈值后,对该类请求进行限流或直接熔断。 - **注意事项**: - 需区分正常流量与攻击流量(如结合IP黑名单)。 #### 4. 参数校验 - **原理**:在业务层拦截非法格式的请求。 - **示例**: - 若查询的ID必须为正整数,拦截负数或非数字请求。 - 使用正则表达式校验参数格式。 #### 5. 异步更新缓存 - **原理**:缓存失效时,通过异步线程或消息队列更新数据。 - **实现步骤**: 1. 缓存未命中时,仅允许单个线程查询数据库。 2. 其他相同请求短暂等待后重试,避免并发穿透。 --- ### 三、组合方案(推荐) 1. **第一层**:参数校验拦截明显非法请求。 2. **第二层**:布隆过滤器过滤非法Key。 3. **第三层**:缓存空对象应对偶然穿透。 4. **第四层**:限流熔断作为最终保护。 --- ### 四、适用场景 - **布隆过滤器**:适用于**固定数据集**(如商品ID范围已知)。 - **缓存空对象**:适用于**动态生成Key**且可能重复请求的场景。 - **限流熔断**:适用于突发高频攻击。 通过上述方法可有效缓解缓存穿透问题,需根据业务特点选择组合策略。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能体格

你的鼓将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值