CAD程序性能优化之数学的应用

       CAD是一门利用计算机技术和图形设备辅助工程师设计的技术,它融合了数学、物理等多学科知识。而数学又是基础中的基础,从简单的点线面,到复杂的微分几何,数学的身影无处不在,特别是像几何内核、数值仿真这种基础计算程序。个人认为,数学可以通过以下两种方式来提升计算效率:

  • 提出新的计算方式,简化计算步骤,提升计算效率。经典的例子是对数的发明,相当于延长了科学家的生命。
  • 将问题归纳和抽象为数学概念,集中研究解决方法。经典的例子是线性代数,发展了各种各样的快速求解方程组的方法。

       无疑,学好数学对编写高性能的CAD程序非常有好处。下面以几个例子说明这一点。

1. 计算几何:凸包算法

       凸包在CAD建模中有重要应用,比如碰撞检测。如图1所示,给定平面上点集 S = { P i ∣ i = 1 , . . , n } S=\{P_i|i=1,..,n\} S={ Pii=1,..,n} ,其凸包 Φ ( S ) \Phi(S) Φ(S) 是:顶点取自于 S S S ,且包含 S S S 中所有点的凸多边形。有一个更加形象的理解是,将点想象成钉在桌子上钉子,将一个橡皮筋撑大,使其包围所有的钉子,松开手后,橡皮筋的形状就是这些点的凸包。
在这里插入图片描述

图1. 计算凸包的一般算法
 

       假设 Φ \Phi Φ 是顺时针的,则需要找到所有这样的点对 ( P i , P j ) (P_i,P_j) (Pi,Pj) ,使得所有其它点都在边 P i P j P_iP_j PiPj 的右侧。不难看出,可能的边有 n ( n − 1 ) n(n-1) n(n1)条,每条边都要进行 n − 2 n-2 n2 次左右侧判断,因此,一般凸包算法的计算复杂度为 O ( n 3 ) O(n^3) O(n3) 。在实际应用中,这样一个需要运行三次方时间的凸包算法,除非是处理小规模的输入集,否则都会由于太慢而毫无用处。

       接下来介绍一种计算凸包的递增式算法。如图2所示,首先,对所有点按照X坐标进行排序,这一处理的复杂度为 O ( n l o g n ) O(nlogn) O(nlogn) 。然后,借助于第一个点 P 1 P_1 P1 和最后一个点 P 16 P_{16} P16 ,将凸包一分为二,分为上凸包和下凸包,分别查找。最后,将2个凸包合并即完成任务。
在这里插入图片描述

图2. 计算凸包的递增式算法
 

       递增式算法的基本思路是:在已有凸包列表的基础上,取其最后2个点,寻找“右拐点”,比如 P 7 P_7 P7 P 1 P 3 P_1P_3 P1P3的右侧,即为右拐点。对于上凸包,首先将 P 1 P_1 P1 P 2 P_2 P2 加入上凸包列表 Φ u p p e r \Phi_{upper} Φ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值