DynaMask: Dynamic Mask Selection for Instance Segmentation CVPR2023
采用FAM动态的将多尺度特征相加,第一层可变形卷积(deformConv1)负责调整L层的位置使L层和P层对齐,将P与上采样后的L相连接,再通过一个3x3的卷积,得到偏移图Δo,用学习到的偏移将L与P对齐,第二个可行变卷积相当于一个注意力机制,关注物体突出的部分,将FAM加到r-FPN的不同阶段,以提升mask预测效果。先利用RoI-align得到区域级的特征,再将P4-P2的特征一次加入,从tiny到large(这里认为是从P5开始做RoI-align),Lr是r-FPN的层,Pi是i-FPN的层。
原创
2023-03-31 16:05:36 ·
821 阅读 ·
1 评论