KMP算法
(acwing 831)给定一个模式串S,以及一个模板串P,所有字符串中只包含大小写英文字母以及阿拉伯数字。
模板串P在模式串S中多次作为子串出现。
求出模板串P在模式串S中所有出现的位置的起始下标。
输入格式
第一行输入整数N,表示字符串P的长度。
第二行输入字符串P。
第三行输入整数M,表示字符串S的长度。
第四行输入字符串M。
输出格式:共一行,输出所有出现位置的起始下标(下标从0开始计数),整数之间用空格隔开。
数据范围:1≤N≤10^4 1≤M≤10^5
1、p[ ]是模板串,即比较短的字符串。
2、s[ ]是模式串,即比较长的字符串。
3、“非平凡前缀”:指除了最后一个字符以外,一个字符串的全部头部组合。
4、“非平凡后缀”:指除了第一个字符以外,一个字符串的全部尾部组合。
5、“部分匹配值”:前缀和后缀的最长共有元素的长度。
6、next[ ]是“部分匹配值表”,即next数组,它存储的是每一个下标对应的“部分匹配值”,是KMP算法的核心。
KMP核心思路:在每次失配时,不是把p串往后移一位,而是把p串往后移动至下一次有可能匹配成功的位置,即next[j]
,这样就可以跳过大多数的失配步骤。而每次p串移动的步数就是通过查找next[ ]
数组确定的。
next数组的含义:next[j]
的含义是指模板串p[1,next[j]]
与p[j-next[j]+1,j]
完全相等,下面以字符串p = "abcab"
为例求next数组
p | a | b | c | a | b |
---|---|---|---|---|---|
下标 | 1 | 2 | 3 | 4 | 5 |
next[] | 0 | 0 | 0 | 1 | 2 |
对next[ 1 ] :前缀 = 空集—————后缀 = 空集—————next[ 1 ] = 0;
对next[ 2 ] :前缀 = { a }—————后缀 = { b }—————next[ 2 ] = 0;
对next[ 3 ] :前缀 = { a , ab }—————后缀 = { c , bc}—————next[ 3 ] = 0;
对next[ 4 ] :前缀 = { a , ab , abc }—————后缀 = { a . ca , bca }—————next[ 4 ] = 1;
对next[ 5 ] :前缀 = { a , ab , abc , abca }————后缀 = { b , ab , cab , bcab}————next[ 5 ] = 2;
匹配思路
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-04tcmFlT-1630472168456)(])
s[a,b] = p[1,j] && s[i] != p[j + 1]
此时要移动p串(不是移动1格,而是直接移动到下次能匹配的位置)
其中1串为[ 1, next[ j ] ]
,3串为[j-next[j]+1,j]
。由匹配可知 1串等于3串,3串等于2串。所以直接移动p串使1到3的位置即可。这个操作可由j = next[j]
直接完成。 如此往复下去,当j == m
时匹配成功。
具体代码实现:
#include <iostream>
using namespace std;
const int N = 10010, M = 100010;
int n, m;
int ne[N];
char s[M], p[N];
int main()
{
cin >> n >> p+1 >> m >> s+1; //下标从1开始
for(int i = 2, j = 0; i <= n; i++){ //i = 1时next数组为0
while(j && p[i] != p[j+1]) j = ne[j];
if(p[i] == p[j+1]) j++;
ne[i] = j;
}
for(int i = 1, j = 0; i <= m; i++){
while(j && s[i] != p[j+1]) j = ne[j];
//如果j有对应p串的元素, 且s[i] != p[j+1], 则失配, 移动p串
//用while是由于移动后可能仍然失配,所以要继续移动直到匹配或整个p串移到后面(j = 0)
if(s[i] == p[j+1]) j++;//当前元素匹配,j移向p串下一位
if(j == n){ //匹配成功,进行相关操作
cout << i-n << ' ';
j = ne[j]; //找到完全匹配的字符串后重新从p的ne[n]位置开始搜索
}
}
}