acwing 831——KMP算法

本文详细介绍了KMP算法,包括非平凡前缀和后缀的概念,部分匹配值表next数组的计算过程,以及如何利用next数组在模式串S中快速找到模板串P的所有出现位置。通过实例演示和代码实现,帮助读者理解并应用KMP算法解决字符串匹配问题。
摘要由CSDN通过智能技术生成

KMP算法

(acwing 831)给定一个模式串S,以及一个模板串P,所有字符串中只包含大小写英文字母以及阿拉伯数字。
模板串P在模式串S中多次作为子串出现。
求出模板串P在模式串S中所有出现的位置的起始下标。

输入格式
第一行输入整数N,表示字符串P的长度。
第二行输入字符串P。
第三行输入整数M,表示字符串S的长度。
第四行输入字符串M。

输出格式:共一行,输出所有出现位置的起始下标(下标从0开始计数),整数之间用空格隔开。

数据范围:1≤N≤10^4    1≤M≤10^5  

1、p[ ]是模板串,即比较短的字符串。
2、s[ ]是模式串,即比较长的字符串。
3、“非平凡前缀”:指除了最后一个字符以外,一个字符串的全部头部组合。
4、“非平凡后缀”:指除了第一个字符以外,一个字符串的全部尾部组合。
5、“部分匹配值”:前缀和后缀的最长共有元素的长度。
6、next[ ]是“部分匹配值表”,即next数组,它存储的是每一个下标对应的“部分匹配值”,是KMP算法的核心。
KMP核心思路:在每次失配时,不是把p串往后移一位,而是把p串往后移动至下一次有可能匹配成功的位置,即next[j],这样就可以跳过大多数的失配步骤。而每次p串移动的步数就是通过查找next[ ]数组确定的。
next数组的含义next[j]的含义是指模板串p[1,next[j]]p[j-next[j]+1,j]完全相等,下面以字符串p = "abcab"为例求next数组

pabcab
下标12345
next[]00012

对next[ 1 ] :前缀 = 空集—————后缀 = 空集—————next[ 1 ] = 0;
对next[ 2 ] :前缀 = { a }—————后缀 = { b }—————next[ 2 ] = 0;
对next[ 3 ] :前缀 = { a , ab }—————后缀 = { c , bc}—————next[ 3 ] = 0;
对next[ 4 ] :前缀 = { a , ab , abc }—————后缀 = { a . ca , bca }—————next[ 4 ] = 1;
对next[ 5 ] :前缀 = { a , ab , abc , abca }————后缀 = { b , ab , cab , bcab}————next[ 5 ] = 2;
匹配思路
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-04tcmFlT-1630472168456)(31041_8e70c3eeac-匹配])
s[a,b] = p[1,j] && s[i] != p[j + 1]此时要移动p串(不是移动1格,而是直接移动到下次能匹配的位置)
其中1串为[ 1, next[ j ] ],3串为[j-next[j]+1,j]。由匹配可知 1串等于3串,3串等于2串。所以直接移动p串使1到3的位置即可。这个操作可由j = next[j]直接完成。 如此往复下去,当j == m时匹配成功。

具体代码实现:

#include <iostream>

using namespace std;

const int N = 10010, M = 100010;

int n, m;
int ne[N];
char s[M], p[N];

int main()
{
    cin >> n >> p+1 >> m >> s+1;        	//下标从1开始
    for(int i = 2, j = 0; i <= n; i++){ 	//i = 1时next数组为0
        while(j && p[i] != p[j+1]) j = ne[j];
        if(p[i] == p[j+1]) j++;
        ne[i] = j;    
    }
    for(int i = 1, j = 0; i <= m; i++){
        while(j && s[i] != p[j+1]) j = ne[j];
        //如果j有对应p串的元素, 且s[i] != p[j+1], 则失配, 移动p串
    //用while是由于移动后可能仍然失配,所以要继续移动直到匹配或整个p串移到后面(j = 0)
        if(s[i] == p[j+1]) j++;//当前元素匹配,j移向p串下一位
        if(j == n){			//匹配成功,进行相关操作
            cout << i-n << ' ';
            j = ne[j];      //找到完全匹配的字符串后重新从p的ne[n]位置开始搜索
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值