深度学习
深度学习
楠兮兮
这个作者很懒,什么都没留下…
展开
-
UNet:卷积网络用于医学图像分割
摘要:成功的网络需要数以千计个被标注的训练样例,这是广为接受的。在这篇论文中,我们提出了一个网络,以及一种依赖于数据增强的加深使用达到对标注样本的使用更加有效的训练策略。该架构包括一个收缩的路径以捕捉邻近关系,以及一个对称的扩张路径使其精确的定位。我们展示了该网络能够基于端到端的少量图片被训练,并且在ISBI挑战中电子显微镜堆栈下的神经元结构分割中优于以往的方法(如滑动窗口的卷积网络)。使用投射光...原创 2020-04-02 17:33:31 · 2593 阅读 · 0 评论 -
BN——批样本归一化减少内部协变量偏移以加速深度网络训练
摘要:由于在训练期间,每一层的输入分布随着前一层参数的改变而发生改变,故训练深度神经网络是复杂的。需求低的学习率与谨慎的参数初始化令训练速度变慢,并且训练饱和非线性模型十分困难。我们称这种现象为内部协变量偏移,并且使用归一化层解决这个问题。我们的方法将归一化作为模型架构的一部分,并对每个小批样本执行归一化,这是优势所在。批样本归一化允许我们使用更高的学习率,更宽泛的初始化。其表现也类似正则化,在一...原创 2020-04-29 18:09:24 · 1957 阅读 · 0 评论 -
ResNet——深度残差学习用于图像识别
摘要: 深度神经网络难于训练。本文提出一种残差学习结构以缓解网络训练的难度,其比之前的架构更深。通过在残差学习函数中参考层的输入,而不是无参考,精确的重新定义层。本文提供一种广泛的实验数据展示了残差网络易于优化,能够在相当深的情况下提高准确度。在ImageNet数据集中评估深度高达152层——8倍于VGG网络的残差网络,但只有很低的复杂度。总体上,残差网络在ImageNet数据测试集达到了3.57...原创 2020-05-09 16:18:40 · 2767 阅读 · 0 评论 -
VGG——深度卷积网络用于大尺寸图像识别
摘要: 本文调查了卷积网络深度对大尺寸图像识别准确度的影响。主要的贡献是使用一个带有很小(3x3)卷积核的架构对网络增加深度的完整评估,该架构展示了通过使用16~19权重层深度在现有的技术表现上的显著改善。该发现基于ImageNet挑战2014,其在定位与分类任务分别获得第一与第二。本文也展示了其表现推广到其他数据集也能达到高水准的结果。其中两个表现最好的卷积网络模型已经开源,以推进计算机视觉中深...原创 2020-04-21 16:09:18 · 1788 阅读 · 0 评论 -
AlexNet——使用深度卷积神经网络进行图像分类
摘要: 在ImageNet LSVRC-2010竞赛中,我们训练了一个大且深的卷积神经网络用来分类1.2M高分辨的图像成不同的1000类。测试集中,我们分别以37.5%和17.0%的错误率高居第一与第五,其远远的超出了原有的高水平表现。神经网络有60M个参数与650K个神经元,包含在5个卷积层,后跟最大池化层,与三个带有1K个通道softmax的全连接层。为了让训练更加迅速,使用非饱和神经元与效率...原创 2020-04-09 15:59:43 · 2810 阅读 · 0 评论