* 要点*
1. 思路
2. 代码实现
3. 时间复杂度分析
1、思路
快速排序:通过一趟排序,将待排序列分割成2个部分,其中一部分比关键字小,另一部分比关键字大,然后再分别对这两个部分进行同样的分割排序,达到最终的整体有序
2、代码实现
int Partition(int* array,int low,int high)
{
int key = low;
for(int i = low;i <= high-1;i++)//从序列的左到右进行遍历
{
if(array[i]<=array[high])//选取最后一个作为分割指标
{
swap(array[i],array[key]);
key++;
}
}
swap(array[key],array[high]);//把指标换到中间,形成分割都的序列
return key;
}
int Qsort(int* array,int low,int high)
{
if(low < high)
{
int p = Partition(array,low,high);//分割序列
Qsort(array,low,p-1);//递归分割左边
Qsort(array,p+1,high);//递归分割右边
}
}
void Print(int* array,int length)
{
for(int i=0;i<length;i++)
{
printf("%d ",array[i]);
}
}
int main()
{
int arrays[] = {5,6,2,4,9,7,5};
Qsort(arrays,0,6);
Print(arrays,7);
return 0;
}
3、时间复杂度分析
- 在最坏的情况下,待排序列为正序或者逆序,每次划分的序列会为比原序列少一个记录的子序列和另一个空序列,如果用递归树表示则是一棵斜树,进行了n-1次递归,第i次递归进行了n-i次比较,所以比较的次数是 n-1 + n-2 +….1 = 0.5*n*(n-1) 时间复杂度为O(n²)。
- 最优的情况下,时间复杂度为O(nlogn)。
- 平均情况下时间复杂度为O(nlogn),空间复杂度为O(logn)。但快排也是一种不稳定的排序方法。