C
n 的范围小于 1e5 ,考虑枚举每组物品数量的上限,并算出根据已有的物品按照该限制至少分多少组M,之后可以求出补齐M组所需要的最少额外数量。
经典结论:
将N 种颜色的物品按每组上限c 个分组,保证每组物品颜色不同。最少的分组数为
所以可以算出所需要最少的额外数量,和K 比较就可。
void solve()
{
int n, k;
cin >> n >> k;
vector<int> a(n);
int sum = 0;
int mx = -1;
for (int i = 0; i < n; i++)
{
cin >> a[i];
sum += a[i];
mx = max(mx, a[i]);
}
for (int i=n;i>=1;i--)
{
int len=max(mx,(sum+i-1)/i);
int t=len*i-sum;
if (t>=0&&t<=k)
{
cout<<i<<"\n";
return;
}
}
}
E 题意:
给你一颗n个节点树,操作:可以将一个叶子节点和它相邻的边删去(这个操作可能会产生新的叶子节点)
问最少操作多少次 使得 所有的叶子 的深度相同。(根节点的深度是1)
假设操作完后,叶子节点的深度是 K
那么对于 深度大于K的节点都要删掉。(sub_sum)
对于 深度小于K 的节点,是否要删除,要看这个节点能到的最大深度,
dp_mx,我们要删除 dp_mx 小于K的节点。
点的个数 通过 数值桶的前缀和后缀来维护。
#include <bits/stdc++.h>
using namespace std;
int read()
{
int x = 0, f = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')
f = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 1) + (x << 3) + ch - '0';
ch = getchar();
}
return x * f;
}
const int N=5e5+10;
vector<int>e[N];
void solve()
{
int n;cin>>n;
for (int i=1;i<=n;i++)
e[i].clear();
vector<int>pre_sum(n+2);// 数值桶
vector<int>sub_sum(n+2);
vector<int>dp(n+1);// 每个节点的深度
vector<int>dp_mx(n+1);// 每个 节点 能到达的最大深度
for (int i=0,u,v;i<n-1;i++)
{
cin>>u>>v;
e[u].push_back(v);
e[v].push_back(u);
}
auto dfs=[&](auto && self,int u,int fa)->void
{
dp_mx[u]=dp[u];
for (auto v:e[u])
{
if (v==fa)continue;
dp[v]=dp[u]+1;
self(self,v,u);
dp_mx[u]=max(dp_mx[u],dp_mx[v]);
}
pre_sum[dp_mx[u]]++;
sub_sum[dp[u]]++;
};
dp[1]=1;
dfs(dfs,1,-1);
for (int i=1;i<=n;i++)
{
pre_sum[i]+=pre_sum[i-1];
}
for (int i=n-1;i>=1;i--)
sub_sum[i]+=sub_sum[i+1];
int ans=n;
for (int i=1;i<=n;i++)
{
ans=min(ans,pre_sum[i-1]+sub_sum[i+1]);
}
cout<<ans<<"\n";
}
int main()
{
std::cin.tie(nullptr)->sync_with_stdio(false);
int t;
t = 1;
cin>>t;
while (t--)
{
solve();
}
return 0;
}