TAG
动态规划
方法
标准DP问题,没有太大思考难度。不过还是在纸上画了一会了,写出了需要满足的条件,结果觉得还是直接直观理解更加简单。
明显需要倒推。
首先是最后一个格子。到达这个格子之前,K至少有1点HP,设当前地牢值为d,若当前地牢如果为战斗(d为负),设则为了保证战斗后剩余1,则至少需要的HP为d+1;如果为补药(d大于0),则只要需要HP为1。
接着是处理两边的边界,边界是任意情况的特例,故先考虑任意情况。
任意情况下,K可以往下或者往右。那么倒推时有时看该地牢右边和下面的至少需要的值。显然,取右边和下边相对较小的即可,该值就是在经过该地牢后至少需要保留的值,设为r。那么进入地牢时的值就是 r-d。如果d是正,则其有可能为负数,但为了保持存活,仍然至少为1。边界就是只能向下或向右的情况。
代码
class Solution {
public:
int calculateMinimumHP(vector<vector<int>>& dungeon) {
size_t nrRow = dungeon.size() ;
if(0 == nrRow) return 1;
size_t nrCol = dungeon[0].size();
vector<vector<int>> minNeedMatrix(nrRow,vector<int>(nrCol));
// init the P
minNeedMatrix[nrRow-1][nrCol-1] = max(1, 1 - dungeon[nrRow-1][nrCol-1]);
// init last col
for(int i = static_cast<int>(nrRow)-2 ; i >= 0 ; --i )
{
minNeedMatrix[i][nrCol-1] = max(1 ,
minNeedMatrix[i+1][nrCol-1] - dungeon[i][nrCol-1]);
}
// init last row
for(int j = static_cast<int>(nrCol)-2 ; j >= 0 ; --j)
{
minNeedMatrix[nrRow-1][j] = max(1,
minNeedMatrix[nrRow-1][j+1] - dungeon[nrRow-1][j]);
}
// iterate
for(int j = nrCol-2 ;j >= 0 ; --j )
{
for(int i = nrRow -2 ; i >= 0 ; --i)
{
minNeedMatrix[i][j] = max(1 ,
min(minNeedMatrix[i+1][j] , minNeedMatrix[i][j+1]) -
dungeon[i][j]);
}
}
return minNeedMatrix[0][0];
}
};