[LeetCode]problem 174. Dungeon Game

TAG

动态规划

link

方法

标准DP问题,没有太大思考难度。不过还是在纸上画了一会了,写出了需要满足的条件,结果觉得还是直接直观理解更加简单。

明显需要倒推。

首先是最后一个格子。到达这个格子之前,K至少有1点HP,设当前地牢值为d,若当前地牢如果为战斗(d为负),设则为了保证战斗后剩余1,则至少需要的HP为d+1;如果为补药(d大于0),则只要需要HP为1。

接着是处理两边的边界,边界是任意情况的特例,故先考虑任意情况。

任意情况下,K可以往下或者往右。那么倒推时有时看该地牢右边和下面的至少需要的值。显然,取右边和下边相对较小的即可,该值就是在经过该地牢后至少需要保留的值,设为r。那么进入地牢时的值就是 r-d。如果d是正,则其有可能为负数,但为了保持存活,仍然至少为1。边界就是只能向下或向右的情况。

代码

class Solution {
public:
    int calculateMinimumHP(vector<vector<int>>& dungeon) {
        size_t nrRow = dungeon.size() ;
        if(0 == nrRow) return 1;
        size_t nrCol = dungeon[0].size();
        vector<vector<int>> minNeedMatrix(nrRow,vector<int>(nrCol));
        // init the P 
        minNeedMatrix[nrRow-1][nrCol-1] = max(1, 1 - dungeon[nrRow-1][nrCol-1]);
        // init last col
        for(int i = static_cast<int>(nrRow)-2 ; i >= 0 ; --i )
        {
            minNeedMatrix[i][nrCol-1] = max(1 , 
                                            minNeedMatrix[i+1][nrCol-1] - dungeon[i][nrCol-1]);
        }
        // init last row
        for(int j = static_cast<int>(nrCol)-2 ; j >= 0 ; --j)
        {
            minNeedMatrix[nrRow-1][j] = max(1, 
                                            minNeedMatrix[nrRow-1][j+1] - dungeon[nrRow-1][j]);
        }
        // iterate
        for(int j = nrCol-2 ;j >= 0 ; --j )
        {
            for(int i = nrRow -2 ; i >= 0 ; --i)
            {
                minNeedMatrix[i][j] = max(1 , 
                                          min(minNeedMatrix[i+1][j] , minNeedMatrix[i][j+1]) - 
                                          dungeon[i][j]);
            }
        }
        return minNeedMatrix[0][0];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值