给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回它的最小深度 2.
这个题看起来似乎和求最大深度一样,但是其实要更复杂一点,因为求最大深度一定是求到最后一个节点,因为是比较左右节点的最大值,所以一定返回叶子节点那里的深度,但是如果是最小值就不是这样,设想已经到倒数第二层的节点,而这个节点只有一个左节点,那么如果返回其左右节点的最小值一定是返回0,但是其叶子节点却是左节点的深度1。所以求最小深度的判断条件要更多一些。(最大深度也可以加这些条件,但是没有必要)。那要加什么条件呢,如果求当前节点的最小深度,那么为空节点深度自然为0;如果不为空节点,当前节点的左右节点都为空,那么这个节点就是叶子节点,其深度就是1;如果当前节点有一个子节点为空,那么叶子节点一定在另一个节点上,所以要求另一个节点的最小深度,因此返回的是另一个节点的最小深度加上当前节点的深度1;如果当前节点的子节点都不为空,那么就返回其两个子节点的最小深度加当前节点的深度1。方法还是递归。
C++源代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
if (root