给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明: 你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
这个题很容易就想到了暴力法,直接从开始遍历第一个和每一个的面积,第二个和每一个的面积。。。。。但是这样效率不高,时间复杂度也有些高,所以可以选择一种简单的方法。仔细想的话可以想到,如果要移动索引,那么宽一定会减小,那么怎么才能取到更大的面积呢?那必然是取更大的高,所以设置左右两个指针,向内移动高度更小的指针即可。
C++源代码:
class Solution {
public:
int maxArea(vector<int>& height)