4、矩阵与线性映射:理论与应用

矩阵与线性映射:理论与应用

一、向量空间中的唯一表示

在向量空间的研究中,有一个重要的事实:对于向量空间 (E) 中的向量 (v),若 (v = \sum_{i\in I} \lambda_i u_i)(其中 ((u_i) {i\in I}) 是 (E) 中的向量族),那么标量族 ((\lambda_i) {i\in I}) 是唯一的,当且仅当 ((u_i)_{i\in I}) 是线性无关的。

证明过程

  1. 正向证明 :假设 ((u_i) {i\in I}) 是线性无关的。若存在另一个标量族 ((\mu_i) {i\in I}) 使得 (v = \sum_{i\in I} \mu_i u_i),那么 (\sum_{i\in I} (\lambda_i - \mu_i) u_i = 0)。由于 ((u_i)_{i\in I}) 线性无关,所以对于所有 (i\in I),都有 (\lambda_i - \mu_i = 0),即 (\lambda_i = \mu_i)。
  2. 反向证明 :采用反证法。若 ((u_i) {i\in I}) 线性相关,则存在不全为零的标量族 ((\mu_i) {i\in I}) 使得 (\sum_{i\in I} \mu_i u_i = 0),且存在 (j\in I) 使得 (\mu_j \neq 0)。此时 (v = \sum_{i\in I} \lambda_i u_i + 0 = \sum_{i\in I} \lambda_i u_i + \sum_{i\in I} \mu_i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值