20、自动驾驶技术:从感知到安全保障的全面解析

自动驾驶技术:从感知到安全保障的全面解析

1. 感知模块:环境识别的基石

感知模块在整个自动驾驶系统中扮演着关键角色,它负责识别和跟踪环境中障碍物的动态,使自动驾驶车辆能够在复杂交通环境中运行。其硬件配置采用了常见的多源解决方案,具体如下:
| 硬件设备 | 数量 | 用途 |
| ---- | ---- | ---- |
| 1 - 光束激光雷达 | 1 个 | 检测周围物体 |
| 16 - 光束激光雷达 | 1 个 | 检测周围物体 |
| 单目相机 | 4 个 | 检测周围物体 |
| 高分辨率 HDR 相机 | 1 个 | 交通灯检测 |
| 超声波接收器 | 若干 | 防止与其他物体或道路元素立即碰撞 |

在物体检测方面,采用了三种独立的方法,并将检测结果进行融合。具体流程如下:

graph LR
    A[点云数据] --> B[机器学习方法处理]
    A --> C[基于几何方法处理]
    D[视觉数据] --> E[基于机器学习方法处理]
    B --> F[融合结果]
    C --> F
    E --> F

这三种方法各有优劣:
- 第一种方法:擅长通用交通相关物体分类,但在处理行人时性能较差,因为行人特征相较于交通标志更难检测。
- 第二种方法:在识别具有典型形状的物体(如行人)时能提供稳定结果。
- 第三种方法:特别适合识别部分可见的物体,因为它关注颜色、阴影和纹理等识别特征。

当遇到特殊情况,如非法交通场景时,若算法没有足够数据来正确识别物体关系,远程监控人员可能会接管车辆。之后,该物体将被归入新类别,并手动标记现有数据用于学习。同时,还开发了一种演绎方法来系统估计感兴趣但不可见的周围交通状态。

2. 预测、决策与规划模块:安全导航的保障

预测、决策与规划模块对于自动驾驶车辆在复杂交通条件下安全导航至关重要。
- 预测 :分两层进行,第一层利用高清地图中的路由信息和车道信息预测跟踪良好的车辆行为,适用于处理规范车辆;第二层通过机器学习和演绎方法预测异常物体行为。两层共同提供车辆视野范围内感兴趣移动物体的轨迹,并附带方差衡量预测置信度。
- 决策与规划 :决策模块采用基于采样和搜索的方法,使用动态规划算法,考虑感知和预测模块的不确定性。规划模块将轨迹规划方案分解为决策生成、路径规划和速度规划多个阶段,以减轻原问题的难度。

在路径和速度规划中,通过一系列约束条件和优化目标构建二次规划(QP)问题:
- 约束条件
- 动态约束:$y_i’ \equiv \frac{dy_i}{dx}$,$y_i’’ \equiv \frac{dy_i’}{dx}$,$y_i’‘’ \equiv \frac{dy_i’‘}{dx}$
- 幅度约束:$|y_i’| \leq y_{max}’$,$|y_i’‘| \leq y_{max}’‘$,$|y_i’‘’| \leq y_{max}’‘’$
- 两点边界条件:在$x = 0$和$x = X$处有特定约束
- 避碰约束:车辆不能与隧道障碍物碰撞
- 优化目标 :$J = \sum_k \sum_i \sum_{j = 0,1,2,3} w_{k,i,j} \cdot (y_i^{(j)} - ref_{k,i,j})^2$

通过数值求解 QP 问题,99%的求解时间在 10 毫秒内,能够对复杂道路场景中的突发事件做出及时反应。

3. 安全与保障策略:多层防护确保安全

为确保自动驾驶车辆的安全,采用了多层安全保障策略:
- 仿真级验证 :所有提交的代码都要经过大量基准测试。利用记录的真实世界数据构建数万个虚拟场景,在这些场景中测试代码性能。通过闭环方法,快速提高开发的安全性。
- 车辆端监控 :实施车辆端低级守护模块,监控控制系统健康状况,处理内部和外部异常。配备冗余单元和故障检测监控,若冗余单元也失效,守护模块将按照预定义的故障恢复规则接管车辆。当遇到外部障碍物靠近或高速接近时,车辆会采取行动降低碰撞风险。
- 远程监控 :开发远程监控平台,实时监控车辆驾驶行为。远程监控工程师可接管车辆以协助其脱离异常情况,若工程师不在,远程平台会向警方发出警告信号。

4. 生产部署:渐进式策略推动发展

在大规模生产部署方面,采用渐进式策略,将技术难题分为四个阶段:
1. 低速自动驾驶并有人工监控。
2. 低速自动驾驶无人监控。
3. 相对高速自动驾驶并有人工监控。
4. 相对高速自动驾驶无人监控。

同时,盈利策略也采用渐进式。早期专注于开发可用于多种机器人应用的低级底盘,具有以下好处:
- 室内低级自主移动技术可无缝应用于仓储物流,提高整个物流链的自主能力。
- 机器人技术的商业化和盈利将在自动驾驶技术全面部署之前实现。
- 即使自动驾驶技术不成熟,开发者也能了解如何开发产品,避免偏离生产目标。

在业务逻辑上,协同提高电子商务平台、仓库和配送中心的调度质量,以提高最后一英里配送效率。目前已在中国多个省份部署 300 多辆自动驾驶车辆进行试运行,累计行驶 715,819 英里。

5. 经验教训:算法、地图与分工的重要性

在部署自动驾驶车辆系统过程中,总结了以下经验教训:
- 算法应具有可解释性,目前深度学习的端到端解决方案不太实用,而机器学习方法在各子模块中广泛应用。
- 最后一英里配送车辆的路线大多固定,因此严重依赖高清地图记录路线细节。
- 在实际道路测试中,追求高接管里程指数可能会误导开发者,准确识别风险并请求人工接管才是安全保障系统的关键部分。
- 明确区分适合人类和自动化机器的工作是有意义的,车辆可处理复杂但重复出现的场景,人类监控人员在必要时接管车辆。同时,自动驾驶并不意味着人类无用,人类可以从事与维护自动驾驶配送系统相关的创新工作。

6. PerceptIn 的经济实用型自动驾驶车辆:满足短途出行需求

PerceptIn 采用了更实用和经济的方法,针对 1 - 5 英里的微交通场景开发自动驾驶车辆。目前的出行服务生态系统在覆盖几英里的中短途出行方面表现不佳,而 PerceptIn 的小型、低速电动自动驾驶车辆在大学校园和工业园区等交通有限的环境中具有经济和技术可行性。

与其他价值数十万美元的 L4 级自动驾驶车辆不同,PerceptIn 的车辆成本更低。尽管自动驾驶本身是一项复杂的工作,但该公司面临的真正挑战是降低成本。经过多年经验,现在已经能够更经济地生产自动驾驶客运车辆。

这些小型自动驾驶车辆速度不超过 20 英里(30 公里)每小时,不与高速交通混合,因此不会像在常规道路和高速公路上行驶的自动驾驶汽车那样引发相同的安全担忧。它们为解决中短途出行难题提供了一种新的选择。

自动驾驶技术:从感知到安全保障的全面解析

7. 感知模块优化思路

为进一步提升感知模块的性能,可以从以下几个方面进行优化:
- 数据融合深度 :目前虽然将三种检测方法的结果进行了融合,但可以探索更深度的数据融合方式。例如,在数据层面进行融合,将点云数据和视觉数据在早期阶段进行关联和整合,而不仅仅是在结果层面融合,这样可能能够更早地发现物体特征,提高检测的准确性。
- 算法优化 :针对不同检测方法的不足进行算法优化。对于第一种机器学习方法在处理行人方面的不足,可以收集更多行人的特征数据,优化训练模型,提高对行人的识别能力。对于第二种基于几何方法,可以结合更多的先验知识,如人体的几何结构和运动规律,进一步提高对行人等典型物体的识别稳定性。
- 传感器升级 :随着技术的发展,不断升级传感器设备。例如,采用更高分辨率、更宽视野的激光雷达和相机,能够提供更丰富的环境信息,从而提升感知模块的整体性能。

8. 预测、决策与规划模块的拓展

预测、决策与规划模块在面对更复杂的交通场景时,可以进行以下拓展:
- 多模态预测 :除了现有的基于路由信息、车道信息和机器学习的预测方法,可以引入更多的模态信息,如天气信息、时间信息等。不同的天气条件和时间段可能会影响车辆和行人的行为,将这些信息纳入预测模型中,可以提高预测的准确性。
- 实时学习与更新 :在决策和规划过程中,引入实时学习机制。当遇到新的复杂场景时,系统能够快速学习并更新决策和规划策略,以适应不断变化的环境。
- 协同规划 :考虑与其他自动驾驶车辆或交通基础设施进行协同规划。通过车辆之间的信息共享和协同决策,可以更好地应对交通拥堵、交叉路口通行等复杂情况,提高整体交通效率。

9. 安全保障策略的强化

为了确保自动驾驶车辆的绝对安全,安全保障策略可以进一步强化:
- 仿真场景多样化 :在仿真级验证中,除了利用真实世界数据构建虚拟场景,还可以引入更多的极端场景和边缘情况。例如,模拟恶劣天气、道路施工、突发事件等场景,对代码进行更严格的测试,提高系统在各种复杂情况下的鲁棒性。
- 车辆端监控智能化 :车辆端守护模块可以引入更智能化的监控算法。例如,利用深度学习算法对车辆的运行状态进行实时分析,提前发现潜在的故障隐患,而不仅仅是在故障发生后进行处理。
- 远程监控协同化 :远程监控平台可以与其他相关部门进行协同。例如,与交通管理部门、保险公司等建立数据共享机制,当车辆出现异常情况时,能够及时通知相关部门,共同处理问题,提高应急响应能力。

10. 生产部署的未来展望

在未来的生产部署中,可以朝着以下方向发展:
- 技术集成与标准化 :随着自动驾驶技术的不断发展,将各个模块进行更紧密的集成,并制定统一的技术标准。这样可以降低开发成本,提高生产效率,促进自动驾驶车辆的大规模推广。
- 跨领域合作 :加强与汽车制造商、科技公司、交通部门等跨领域的合作。通过各方的资源共享和优势互补,共同推动自动驾驶技术的发展和应用。
- 服务模式创新 :除了目前的配送服务,探索更多的服务模式。例如,开展自动驾驶的共享出行服务、物流配送与零售的一体化服务等,为用户提供更便捷、高效的服务体验。

11. 经验教训的应用与推广

将在部署过程中总结的经验教训应用到更多的项目中,并进行推广:
- 算法可解释性推广 :在行业内推广算法可解释性的理念,让更多的开发者和用户认识到可解释算法的重要性。通过建立相关的标准和规范,引导行业朝着更可靠、可信任的方向发展。
- 高清地图共享 :推动高清地图的共享机制,不同的企业和机构可以共享地图数据,减少重复开发的成本,提高地图的准确性和更新速度。
- 人机分工模式复制 :将明确区分人类和自动化机器工作的模式复制到其他相关领域,如智能物流、智能家居等,提高整个社会的智能化水平。

12. PerceptIn 车辆的市场前景与挑战

PerceptIn 的经济实用型自动驾驶车辆具有广阔的市场前景,但也面临一些挑战:
- 市场前景
- 解决出行痛点 :能够有效解决中短途出行难题,满足市场对便捷、经济出行的需求。
- 应用场景广泛 :适用于大学校园、工业园区、旅游景区等多种交通有限的环境,具有较大的市场潜力。
- 成本优势 :较低的成本使其在市场竞争中具有优势,更容易被用户接受。
- 挑战
- 技术可靠性 :虽然车辆速度较低且不与高速交通混合,但仍需要确保技术的可靠性,避免出现安全事故。
- 法规政策 :自动驾驶车辆的法规政策还在不断完善中,需要适应不同地区的法规要求,确保合法运营。
- 市场认知度 :提高市场对这种新型自动驾驶车辆的认知度和接受度,需要进行大量的宣传和推广工作。

以下是一个总结上述内容的 mermaid 流程图:

graph LR
    A[感知模块优化] --> B[数据融合深度]
    A --> C[算法优化]
    A --> D[传感器升级]
    E[预测、决策与规划模块拓展] --> F[多模态预测]
    E --> G[实时学习与更新]
    E --> H[协同规划]
    I[安全保障策略强化] --> J[仿真场景多样化]
    I --> K[车辆端监控智能化]
    I --> L[远程监控协同化]
    M[生产部署未来展望] --> N[技术集成与标准化]
    M --> O[跨领域合作]
    M --> P[服务模式创新]
    Q[经验教训应用推广] --> R[算法可解释性推广]
    Q --> S[高清地图共享]
    Q --> T[人机分工模式复制]
    U[PerceptIn 车辆] --> V[市场前景]
    U --> W[挑战]

综上所述,自动驾驶技术在各个方面都有很大的发展空间。通过不断优化和改进感知、预测、决策、规划等模块,强化安全保障策略,合理进行生产部署,并应用和推广经验教训,能够推动自动驾驶技术朝着更安全、高效、经济的方向发展。同时,像 PerceptIn 这样的企业通过创新的产品和解决方案,为解决中短途出行难题提供了新的思路和选择,但也需要面对市场和技术等方面的挑战。未来,随着技术的不断进步和市场的逐渐成熟,自动驾驶技术有望在更多领域得到广泛应用,为人们的生活带来更多的便利。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值