离散数学 笔记整理

离散数学

 内容大纲
     	  ╭1> 命题与命题公式
     	  |2> 命题逻辑的推理理论
     	  |3> 谓词逻辑
          |4> 集合
          |5> 关系与函数
 离散数学 <
          |6> 代数系统的一般概念
          |7> 格与布尔代数
          |8> 图
          ╰9> 图的应用

第一章:命题与命题公式

  ╭1.命题与命题连接词:
  |
  |            ╭*推理:
  |            | 由一个或几个已知的 前提,推导出一个未知结论的思维过程称为 推理;
  |            | 推理的基本要素就是表达这些前提的一些陈述句,也就是所表达的命题↓;
  |            |
  |            |1.命题的概念:
  |            |  具有 唯一 真值的 陈述句(疑问句,感叹句,祈使句都不是命题)
  |            |  *1.陈述句:是陈述一个事实或说话人的看法的句型。分为肯定句和否定句
  |            |  *2.唯一真值:一个命题是可以判断真伪的,不是真就是假,
  |            |     1)当命题正确时,也可以说:真值为真,或者真值为T(True),真值为1;
  |            |     2)当命题不正确时,也可以说:真值为假,或者真值为F(False),真值为0;
  |1>命题 与  <
  |  命题的表示 |2.命题的符号化
  |            |  用符号表示命题(通常用大写英文字母)
  |            |  示例1:                           示例2.判断下列句子是否是命题
  |            |  P:1是最小的正整数;                A.中华人民共和国的首都是北京(是命题,为真命题)
  |            |  Q:我明天放假;                     B.雪是黑色的(是命题,是假命题)(有未知数(x),就不是命题)
  |            |  当命题为真时,记做:P为T,或者P为1;   C.张三是学生(是命题,汉字代表张三存在,可验证)
  |            ╰  当命题为假时,记做:P为F,或者P为0:   D.江南太美了(不是命题,因为不是陈述句)
  |
  |            ╭1.原子命题(简单命题)---不能分解的命题;
  |            |2.复合命题---由原子命题通过 联结词 联结而成的命题;
  |            |  示例:
  |            |  因为1是最小的正整数,所以比1小的数都不是正整数;
  |            |  原子命题1:         原子命题2:               联结词:
  |            |  1是最小的正整数     比1小的数都不是正整数     因为...所以...
  |            |
  |            |3.常用的联结词
  |            |         ╭P的否定记作: ¬P(读作:非P) 例:P:我喜欢你,¬P:我不喜欢你
  |            | 1)否定 < 若P为1,¬P为0;若P为0,¬P为1;
  |            |         ╰¬(¬P)<=>P; 双重否定为肯定
  |            |
  |            |         ╭P与Q的合取记作: P∧Q(读作:p且Q) 例:P:今天是星期一,并且 Q:今天下雨了;
  |            | 2)合取 < 当P,Q同时为1时,P∧Q=1(P=1,Q=1),其余情况均为0;
  |            |         ╰P∧¬P<=>F; P∧T<=>P;
  |            |
  |            |         ╭P与Q的析取记作: P∨Q(读作:P或Q) 例:中午要么吃米饭要么吃馒头;
  |            | 3)析取 < 当P,Q同时为0时,P∨Q=0(P=0,Q=0),其余情况均为1;
  |            |         ╰P∨¬P<=>T; P∨T<=>T; 德摩根律:¬(P∧Q)<=>¬P∨¬Q; ¬(P∨Q)<=>¬P∧¬Q (*****)
  |2>复合命题 <
  |  与联结词   |         ╭P与Q的条件命题记作: P→Q(读作: 若P则Q)
  |            |         |例:如果明天下雨,就睡懒觉<=>(不下雨)∨(睡懒觉);
  |            |         |P→Q <=> ¬P∨Q ;
  |            |         |当P为1,Q为0时,P→Q=0 (p=1,Q=0),其余情况均为1;
  |            | 4)条件 <
  |            |         |只要P,就Q   (P→Q)
  |            |         |因为P,所以Q (P→Q)
  |            |         |只有P,才Q   (Q→P) 例:只有下雨,我才打车; P:下雨  Q:打车,  下雨我也可以不打车,
  |            |         ╰除非P,否则Q (¬Q→P <=> ¬P→Q) (只要¬Q,就P) (只有P,才¬Q)  p→Q <=> ¬Q→¬P
  |            |
  |            | 5)双条件:P与Q的双条件命题记作: P<->Q(读作: P当且仅当Q)
  |            |         当P与Q的真值相同时,P<->Q的真值为T,否则P<->Q的真值为F;
  |            |         P(F)且Q(F) 或 P(T)且Q(T)--> P<->Q=T  其他的 P<->Q=F
  |            |
  |            |4.条件的证明                         5.下列语句为假命题的是 (D)
  |            |  证明:¬P→¬Q<=>P∨¬Q                 A.如果3是偶数,那么1/3就是有理数;
  |            |      ¬P→¬Q=>¬(¬P)∨(¬Q)=>P∨¬Q        P→Q<=>¬P∨Q=1
  |            |                                       B.只要3是偶数,1/3就是有理数;
  |            |  证明:¬P→Q<=>¬Q→P                     P→Q<=>¬P∨Q=1
  |            |      ¬P→Q = P∨Q = Q∨P = ¬Q→P     C.除非1/3是有理数,否则3不是偶数
  |            |                                       ¬P→Q <=>P∨Q  P:1/3是有理数=1, Q:3不是偶数=1
  |            |  证明:¬(P→Q)<=>P∧¬Q                D.只有3是偶数,1/3才是有理数
  |            |      ¬(P→Q) = ¬(¬P∨Q) = P∧¬Q        Q→P<=>¬Q∨P=0; P:3是偶数=0,¬Q:1/3不是有理数=0
  |            |
  |            |  出题类型: p:原子命题1  q:原子命题2  要符号化的目标命题 联结词P联结词Q;
  |            |  **条件命题符号化表示做题思路**:
  |            |  *1.先看目标命题,并将命题结合题目中给出的原子命题进行转化;
  |            |  *2.将转化好的符号命题,与题目中的选项做对比;
  |            |  *3.如果结果不在所给的答案中,就找所得结果的等价命题;
  |            |
  |            |  示例1:设p:他怕困难; q:他获得成功; 命题:"除非他不怕困难,否则他不会获得成功"
  |            |        可符号化表示:除非 P 否则 Q---> 除非¬p,否则¬q==>只要¬(¬q)就¬(¬p)==>q→p
  |            |
  |            |  示例2:设p:他怕困难; q:他获得成功; 命题:"只要他怕困难,他就不会获得成功"
  |            |        可符号化表示;只要p就¬q 所以命题符号化为:p→¬q <=> q→¬p;
  |            |
  |            |  示例3:设p:天下雨; q:我走路上班.命题:"只有不下雨,我才走路上班",
  |            |        可符号化表示: 只有¬p,才q-->q->¬p
  |            |
  |            |  示例4:设p:我在家, Q:天下雨, 命题"只要天下雨,我就在家"
  |            ╰        可符号化表示: 只要Q 就P--->Q->P
  |
  |2.命题公式的等值验算
  |
  |            ╭1.定义:
  |            |  将命题用联结词和圆括号,按逻辑关系联结起来的符号串,也称合式公式;
  |            |  例如:P, Q, ¬P, P→Q, P∨Q, P∧Q
  |            |
  |            |2.子公式:
  |            |  设A是一个命题公式,B是A的一部分,且B也是一个命题公式,则称B是A的子公式;
  |            |  (P∧Q)→R
  |            |
  |            |3.命题常项:
  |            |  若P代表一个具体的命题,P的真值是确定的,所以称为"常"项,相当与数学表达式中的常数;
  |            |
  |            |4.命题变元:
  |            |  符号P表示一个任意的命题,P的真值可以是0,也可以是1;
  |            |
  |            |5.命题公式的指派:
  |            |  设A为命题公式:用命题常项替换公式中的命题变元称作"指派",
  |            |  对A中所有的命题变元指定一个真值:含有n个命题变元的命题公式,有2^n组指派
  |            |  1) 真指派: 使A的值为1的指派;
  |            |  2) 假指派: 使A的值为0的指派;
  |            |
  |            |  示例:P→Q <=> ¬P∨Q,对命题公式P→Q的指派如下:
  |            |  P=0, Q=0 真指派 1
  |            |  P=0, Q=1 真指派 1
  |            |  P=1, Q=0 假指派 0
  |            |  P=1, Q=1 真指派 1
  |            |  P→Q有3个真指派,1个假指派, 假指派为 10-→表示P=1,Q=0 是假指派
<   1>命题公式<
  |            |6.构造真值表
  |            |  *1.第一行:按从简到繁的顺序写出所有子公式,最后一列是命题公式本身;
  |            |  *2.一共有2^(变元的个数)组指派;如3个变元就是 2^3=8个指派
  |            |  *3.为每一个命题变元指派,按 二进制加法 的顺序,从000开始到111结束;
  |            |  *4.开始算每一个子公式的真值,进而得出命题公式的真值;
  |            |
  |            |  示例:构造真值表: (P∧Q)→R
  |            |    变元1   变元2    变元3  命题公式1  命题公式2
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   P   |   Q   |   R   |  P∧Q | (P∧Q)→R | ¬(P∧Q) ∨ R
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   0   |   0   |   0   |   0   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   0   |   0   |   1   |   0   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   0   |   1   |   0   |   0   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   0   |   1   |   1   |   0   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   1   |   0   |   0   |   0   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   1   |   0   |   1   |   0   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   1   |   1   |   0   |   1   |    0     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   1   |   1   |   1   |   1   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  ╰------按二进制排序------╯
  |            |
  |            ╰  命题公式(P∧Q)→R的真指派有7个,假指派有1个,假指派是110
  |
  |            ╭*研究两个公式是否等值有两种方法,一是基于真值表,二是基于常用命题定律;
  |            |
  |            |1.使用真值表进行等值验算:
  |            |   示例:构造真值表: P→Q<=> ¬P∨Q
  |            |    变元1   变元2  命题公式1 命题公式2 命题公式3
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   P   |   Q   |   ¬P  |  P→Q  |  ¬P∨Q   |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   0   |   0   |   1   |   1   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   0   |   1   |   1   |   1   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   1   |   0   |   0   |   0   |    0     |
  |            |  +-------+-------+-------+-------+----------+
  |            |  |   1   |   1   |   0   |   1   |    1     |
  |            |  +-------+-------+-------+-------+----------+
  |            |
  |            |  给定两个命题公式A,B,若对任何一组指派,A和B的真值都相同,
  |            |  称A和B是等值或等价的,记做A<=>B;
  |            |
  | 2>等值验算<
  |   与蕴涵式
  |            |
  |            |                ╭等值验算:
  |            |                |(¬P∨¬Q)→P<=>P;//去箭头P→Q<=>¬P∨Q ↓
  |            |                |<=>¬(¬P∨¬Q)∨P;//德摩根律 ↓
  |            |                |<=>(P∧Q)∨P;//吸收律 ↓
  |            |                |<=>P;
  |            |2.常用的命题定律<
  |            |   (等值验算)    |1.双重否定律: A<=> ¬¬A
  |            |                |2.幂等律:    A<=>A∨A, A<=>A∧A
  |            |                |3.结合律:(A∨B) ∨C<=>A∨(B∨C)      (A∧B) ∧C<=>A∧(B∧C)
  |            |                |4.吸收律:A∨(A∧B)<=>A(有重复)       A∧(A∨B)<=>A (括号里外符号相反)
  |            |                |5.分配律:A∨(B∧C)<=>(A∨B)∧(A∨C)  A∧(B∨C)<=>(A∧B)∨(A∧C)
  |            |                |6.德摩根律:¬(A∨B)<=> ¬A∧¬B         ¬(A∧B)<=> ¬A∨¬B
  |            |                |7.交换律: A∧B<=>B∧A,  A∨B=B∨A,
  |            |                |8.同一律: A∨F<=>A A∧T<=>A       9.零律:A∨T<=>T A∧F<=>F
  |            |                |10.排中律:A∨¬A=T   11.否定律: A∧¬A=F;
  |            |                |12.蕴涵等值式: A→B <=> ¬A∨B;
  |            |                |13.等价等值式: A↔B<=>(A→B)∧(B→A) 14.等价否定等值式: A↔B <=> ¬A↔¬B
  |            |                |15.假言易位: A→B <=> ¬B→¬A // A→B =>¬A∨B=>B∨¬A=> ¬B→¬A;
  |            |                |16.归谬论: (A→B)∧(A→¬B) <=> ¬A =>(¬A∨B)∧(¬A∨¬B)
  |            |                ╰        =>(¬A∧¬A∨¬B)∨(B∧¬B∨¬A) =>¬A∨¬B => ¬A
  |            |
  |            |
  |            |         ╭1.设A为命题公式,若在各种指派情况下,其取值均为T,则称A为重言式,或永真式;P∨¬P/T<=>T
  |            |         |2.设A为命题公式,若在各种指派情况下,其取值均为F,则称A为矛盾式,或永假式;P∧¬P/F<=>F
  |            |         |例:下列为永真式的为:
  |            |         |(P→Q)∨Q=>(¬P∨Q)∨Q=>¬P∨(Q∨Q)=>¬P∨Q;是可满足式不是永真式;
  |            |         |(P∨Q)→P=>¬(P∨Q)∨P=>(¬P∧¬Q)∨P=>(¬P∨P)∧(¬Q∨P)=>T∧(¬Q∨P)=>¬Q∨P
  |            |         |(P→Q)∨P=>(¬P∨Q)∨P=>(¬P∨P)∨Q=>T∨Q=>T;是永真式
  |            |         |P∨(¬P∧Q)=>(P∨¬P)∧(P∨Q)=>P∨Q;是可满足式不是永真式;
  |            |3.蕴涵式<
  |            |         |3.当P→Q是一个重言式时,称P蕴涵Q, 记做P=>Q; P包含了Q
  |            |         |证明:A∧(A→B)=>B //等价于↓
  |            |         |<=>(A∧(A→B))->B<=> T //去箭头↓
  |            |         |<=>¬(A∧(¬A∨B))∨B<=>(¬A∨¬(¬A∨B))∨B
  |            |         |<=>(¬A∨(A∧¬B))∨B<=>((¬A∨A)∧(¬A∨¬B))∨B
  |            ╰         ╰<=>(¬A∨¬B)∨B<=>¬A∨(¬B∨B)<=>¬A∨T <=> T ;//证明完成
  |
  |              ╭1.P与Q的与非式:P↑Q<=>¬(P∧Q),符号↑是与非联结词;
  ╰3>联结词完备集<
                 ╰2.P与Q的或非式:P↓Q<=>¬(P∨Q),符号↓是或非联结词;

第二章:命题逻辑的推理理论
                         ╭1.简单析取式: 由 命题变元 及其 否定 组成的析取式(¬和∨)
                         |  P∨¬Q∨R∨Q∨R∨¬P∨R   P∨¬P <=> T
                         |  结论:一个简单析取式是 重言式,当且仅当它同时含某个命题变元及它的否定式;
                         |
                         |2.简单合取式: 由 命题变元 及其 否定 组成的合取式(¬和∧)
                         |  P∧¬Q∧R∧¬P∧R∧Q∧R    P∧¬P <=> F
                         |  结论:一个简单合取式是 矛盾式,当且仅当它同时含某个命题变元及它的否定式;
           ╭*1.范式的概念<
           |             |3.合取范式:
           |             |  可以写成以下形式,其中A,B,C...都是简单析取式
           |             |  A∧B∧C∧...----简单析取式的合取是 合取范式
           |             |
           |             |4.析取范式:
           |             |  可以写成以下形式,其中A,B,C...都是简单合取式
           |             ╰  A∨B∨C∨...----简单合取式的析取是 析取范式
  ╭1.范式 <
  |        |                   ╭1)n个命题变元的简单合取式,称作小项,其中每个命题变元 与它的否定 不能同时存在,
  |        |                   |  但每个命题变元必须出现且仅出现一次;n个命题变元的小项有2^n个;
  |        |                   |  例:P和Q的小项有4个:P∧Q;¬P∧Q;P∧¬Q;¬P∧¬Q;//简单合取式
  |        |                   |  大多数情况小项的真值为0;(因为是合取,∧左右都为1,真值才为1,否则就真值为0)
  |        |             ╭小项<
  |        |             |     |2)小项的编码:
  |        |             |     |  mi,其中i是使得 小项等于1 的一组指派的二进制表示
  |        |             |     |  i是使各变元命题为1的表示(P(i=1),¬Q(i=0)),编码就是使小项各变元的真值为1;
  |        |             |     ╰  例:小项P∧¬Q∧R的编码是m101 , P与Q的小项编码为m01,公式为:¬P∧Q;
  |        ╰*2.大项与小项<
  |                      |     ╭1)n个命题变元的简单析取式,称作大项,其中每个命题变元 与它的否定 不能同时存在,
  |                      |     |  但每个命题变元必须出现且仅出现一次;n个命题变元的大项有2^n个;
  |                      |     |  例:P和Q的大项有4个:P∨Q;¬P∨Q;P∨¬Q;¬P∨¬Q;//简单析取式
  |                      |     |  大多数情况大项的真值为1;(因为是析取,∨左右都为0,真值才为0,否则就真值为1)
  |                      ╰大项<
  |                            |2)大项的编码:
  |                            |  Mi,其中i是使得 大项等于0 的一组指派的二进制表示
  |                            |  i是使各变元命题为0的表示(P(i=0),¬Q(i=1)),编码就是使大项各变元的真值为0;
  |                            ╰  例:大项¬P∨Q的编码是M10,大项P,Q的与R的编码为M110,大项公式:¬P∨¬Q∨R
  |
  |                        ╭1.概念:
  |                        |  对于给定的命题公式,如果有一个等价公式,它仅由 小项的析取 所组成,
  |                        |  则该等价式称为原式的 主析取范式; 小项--一连串的∧(且(合取))
  |                        |  *1.若A<=>B,B=mi∨mj∨...,则B是A的主析取范式;例:(P∧Q)∨(¬P∧R)
  |                        |  *2.在命题公式的真值表中,所有真值为T的指派所对应的小项的析取,
  |                        |     即构成该公式的主析取范式;(所有命题公式小项编码的析取) (i使小项变元真值为1)
  |                        |     小项是n个简单合取式(且∧) P的小项编码mi(m0->p(0)->¬P,m1->P(1)->P)
  |          ╭*1.主析取范式<
  |          |             |2.使用 真值表 来获取命题的主析取范式 (小项的析取,小项:真值为1)
  |          |             |  例:用真值表发求(P→Q)∧(Q→R)的主析取范式: 真值为1
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   P   |   Q   |   R   |  P→Q  |   Q→R   |  (P→Q)∧(Q→R) |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   0   |   0   |   0   |   1   |    1    |       1       | 主析取范式
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   0   |   0   |   1   |   1   |    1    |       1       | 主析取范式
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   0   |   1   |   0   |   1   |    0    |       0       |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   0   |   1   |   1   |   1   |    1    |       1       | 主析取范式
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   1   |   0   |   0   |   0   |    1    |       0       |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   1   |   0   |   1   |   0   |    1    |       0       |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   1   |   1   |   0   |   1   |    0    |       0       |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   1   |   1   |   1   |   1   |    1    |       1       | 主析取范式
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  真值为T的小项:m000:¬P∧¬Q∧¬R; m001:¬P∧¬Q∧R; m011:¬P∧Q∧R; m111:P∧Q∧R
  |          |             |  主析取范式为:(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(¬P∧Q∧R)∨(P∧Q∧R)
  |          |             |
  |          |             |3.用等值演算法求主析取范式:
  |          |             |  1)如果有→;用P→Q <=> ¬P∨Q 消去→;
  |          |             |
  |          |             |  2)如果有¬出现在括号前面;用德摩根律:¬(A∨B)<=>¬A∧¬B
  |          |             |    或 ¬(A∧B)<=>¬A∨¬B 使得"¬"出现在变元的前面;
  |          |             |
  |          |             |  3)若得到的结果不是析取形式;用分配律:A∧(B∨C) <=> (A∧B)∨(A∧C)
  |          |             |    保证在主析取范式中不出现 A∧(B∨C); ( 主析取范式-->(小项1)∨(小项2) )
  |          |             |
  |          |             |  4)第(3)步结束后,可得简单析取式,若简单析取式A中缺少变元P,通过如下变换增加变元P
  |          |             |    A<=>A∧(P∨¬P)<=>(A∧P)∨(A∧¬P)(使用分配律),去掉重复小项即得到主析取范式;
  |          |             |
  |          |             |示例:(P→Q)∧(Q→R)
  |          |             |  <=>(¬P∨Q)∧(¬Q∨R)
  |          |             |  <=>[(¬P∨Q)∧¬Q] ∨ [(¬P∨Q)∧R]  //使用分配律 A∧(B∨C)<=>(A∧B)∨(A∧C)
  |          |             |  <=>[(¬P∧¬Q)∨(Q∧¬Q)] ∨ [(¬P∧R)∨(Q∧R)] // 同上也是使用分配律
  |          |             |  <=>(¬P∧¬Q)∨(Q∧¬Q)∨(¬P∧R)∨(Q∧R)
  |          |             |  <=>(¬P∧¬Q)∨(¬P∧R)∨(Q∧R) //使用A<=>A∧(P∨¬P);//(P∨¬P)<=>T T∧A<=>A ↓
  |          |             |  <=>[(¬P∧¬Q∧R)∨(¬P∧¬Q∧¬R)]∨[(¬P∧R∧Q)∨(¬P∧R∧¬Q)]∨[(Q∧R∧P)∨(Q∧R∧¬P)]
  |          |             |  <=>(¬P∧¬Q∧R)∨(¬P∧¬Q∧¬R)∨(¬P∧R∧Q)∨(Q∧R∧P);
  |          |             ╰ * 保证小项中每一个简单合取式中的全部变元都有且出现一次;↑
  |          |
<  2.主范式 <
  |          |
  |          |             ╭1.概念:
  |          |             |  对于给定的命题公式,如果有一个等价公式,它仅由 大项的合取 所组成,
  |          |             |  则该等价式称为原式的 主合取范式; 大项--一连串的∨(或(析取))
  |          |             |  *1.若A<=>B,B=Mi∧Mj∧...,则B是A的主合取范式;例:(P∨Q)∧(¬P∨R)
  |          |             |  *2.在命题公式的真值表中,所有真值为F的指派所对应的大项的合取,
  |          |             |     即构成该公式的主析取范式,(所有命题公式大项编码的合取)(i使大项变元真值为0)
  |          |             |     大项是n个简单析取式(或∨) P的大项编码Mi(M0->p(0)->P,M1->P(1)->¬P)
  |          |*2.主合取范式<
  |          |             |2.使用 真值表 来获取命题的主合取范式 (大项的合取,大项:真值为0)
  |          |             |  例:用真值表发求(P→Q)∧(Q→R)的主合取范式: 真值为0
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   P   |   Q   |   R   |  P→Q  |   Q→R   |  (P→Q)∧(Q→R) |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   0   |   0   |   0   |   1   |    1    |       1       |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   0   |   0   |   1   |   1   |    1    |       1       |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   0   |   1   |   0   |   1   |    0    |       0       | 主合取范式
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   0   |   1   |   1   |   1   |    1    |       1       |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   1   |   0   |   0   |   0   |    1    |       0       | 主合取范式
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   1   |   0   |   1   |   0   |    1    |       0       | 主合取范式
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   1   |   1   |   0   |   1   |    0    |       0       | 主合取范式
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  |   1   |   1   |   1   |   1   |    1    |       1       |
  |          |             |  +-------+-------+-------+-------+---------+---------------+
  |          |             |  真值为F的大项:M010:P∨¬Q∨R; M100:¬P∨Q∨R; M101:¬P∨Q∨¬R; M110:¬P∨¬Q∨R;
  |          |             |  主合取范式为:(P∨¬Q∨R)∧(¬P∨Q∨R)∧(¬P∨Q∨¬R)∧(¬P∨¬Q∨R)
  |          |             |
  |          |             |3.用等值演算法求主合取范式:
  |          |             |  1)如果有→;用P→Q <=> ¬P∨Q 消去→;
  |          |             |
  |          |             |  2)如果有¬出现在括号前面;用德摩根律:¬(A∨B)<=>¬A∧¬B
  |          |             |    或 ¬(A∧B)<=>¬A∨¬B 使得"¬"出现在变元的前面;
  |          |             |
  |          |             |  3)若得到的结果不是合取形式;用分配律:A∨(B∧C) <=> (A∨B)∧(A∨C)
  |          |             |    保证在主合取范式中不出现 A∨(B∧C); ( 主合取范式-->(大项1)∧(大项2) )
  |          |             |
  |          |             |  4)第(3)步结束后,可得简单合取式,若简单合取式A中缺少变元P,
  |          |             |    使用A<=>A∨(P∧¬P);//(P∧¬P)<=>F F∨A<=>A <=> (A∨P)∧(A∨¬P)//大项合取
  |          |             |
  |          |             |  示例:(P→Q)∧(Q→R) 的主合取取范式:
  |          |             |  <=>(¬P∨Q)∧(¬Q∨R)
  |          |             |  <=>(¬P∨Q∨R)∧(¬P∨Q∨¬R)∧(¬Q∨R∨P)∧(¬Q∨R∨¬P)
  |          |             |  <=>(¬P∨Q∨R)∧(¬P∨Q∨¬R)∧(P∨¬Q∨R)∧(¬P∨¬Q∨R)
  |          |             |
  |          |             ╰ *保证大项中每一个简单析取式中的全部变元都有且出现一次;
  |          |
  |          |           ╭1.若命题公式A含有n个命题变元,且A的主析取范式中含有k个小项,
  |          |           |  则A的主合取范式中含有 2^n-K 个大项; (主析取范式的小项+主合取范式的大项=2^n)
  |          |           |
  |          |           |2.若A可化为含2^n个小项的主析取范式,则A为重言式(一共就2^n项,即所有命题项全为T);
  |          ╰主范式结论 <
  |                      |3.若A可化为含2^n个大项的主合取范式,则A为矛盾式(一共就2^n项,即所有命题项全为F);
  |                      |
  |                      ╰4.若A的主析取范式中至少有一个小项,则A为可满足式(只要不是矛盾式就是可满足式);
  |
  |               ╭1>常用推理公式如下:
  |               | *1.A→B<=>¬B→¬A //证明: A→B <=> ¬A∨B <=> B∨¬A <=> ¬B→¬A
  |               | *2.A;A→B => B //A为真,且A→B为真,则B为真;
  |               | *3.A→B;A→C => A→C; //A→B和A→C都为真,则A→C为真
  |               |
  |               |2>常用的推理规则:
  |               | *1.前提引用 规则: 在证明的任何步骤上,都可以 引入前提,简称 P规则; //前提引用
  |               | *2.结论引用 规则: 在证明的任何步骤上,所证明的结论可作为后续证明的前提, 称为T规则;[1]
  |               | *3.转换规则: 在证明的任何步骤上,等值的命题公式可以相互置换,也称为T规则,如用P→Q置换¬P∨Q;[2]
  |               | [1]:将结论置换成前提引用; [2]:等价置换
  ╰3.自然推理系统 <
                  |
                  |示例:构造下列推理证明:
                  |如果他训练刻苦,他必赢的比赛;如果他赢的比赛,他得到总理接见;总理没有接见他,所以他训练不刻苦;
                  |解题思路:
                  |命题P:他训练刻苦;命题Q:他赢得比赛;命题R:他得到总理接见;
                  |前提:P→Q;Q→R;¬R; 结论:¬P;证明:P→Q;Q→R=>P→R=>¬R→¬P , ¬R;¬R→¬P =>¬P (草稿)
                  | P→Q;Q→R=> P→R //符号化--原理-->  证明:(规范化答案)
                  |       <=>¬P∨R //去箭头          (1)P→Q    P规则       (4) ¬R→¬P   T(3)
                  |       <=>R∨¬P //交换律          (2)Q→R    P规则       (5) ¬R      P规则
                  ╰       <=>¬R→¬P //还原箭头        (3)P→R    T(1) T(2)   (6) ¬P      T(4) T(5)


第三章 谓词逻辑


                              ╭1.主语(个体词):
                              |  "x大于3",其中x是句子的主语,这是一个变量,称为个体词
                              |
                              | *1.个体词 是指所研究对象中可以独立存在的具体的或抽象的客体.
                              |    即可以是特定的个体,称为个体常项,用a,b,c表示;
                              |    也可以表示为一个泛指的个体,称为个体变量,用x,y,z表示;
                              |
                              | *2.个体变量的取值范围为个体域,或称论域
                ╭*1.谓词的概念<
                |             |2.谓词:
                |             |  "x大于3",其中大于3是谓语部分,它表示主语的某一个性质,称为谓词
                |             |
                |             | *1.谓词用来指明个体的性质或个体之间的关系等,常用大写字母P,Q,R来表示,表示
                |             |    具体性质或关系的谓词称为谓词常量,表示抽象或泛指的性关的谓词称为谓词变量;
                |             |
                |             | *2.示例:
                |             |    老王是大学生-> "是大学生"是谓词;
                |             ╰    用a表示"老王",用P表示"是大学生",则"老王是大学生" 表示为P(a)
  ╭1.概念与表示 <
  |             |             ╭谓词变项(命题函数)
  |             |             |由一个谓词,一些个体变量组成的表达式称为谓词变项或命题函数 P(x);
  |             |             |例1:x大于3: 用P表示"大于3",则"x大于3"的命题函数
  |             |             |    表示为P(x):其中,P表示 性质, x表示 变量 (个体词);
  |             |             |
  |             |             |例2.P(x):x是坏人; a:老王; -> p(a):老王是坏人
  |             |             |
  |             |             |例3.P(x): x的学历是本科; Q(x):x的哥哥; a老王
  |             |             |    P[Q(a)]: 老王的哥哥的学历是本科;
  |             ╰*2.谓词的表示<
  |                           |例.(x,y): x大于y ->(5,4)∧(4,3)→(5,3):因为5大于4,并且4大于3,所以5大于3;
  |                           |
  |                           |例4.设a:小华,p(x):x是教授,f(x):x的父亲,则"小华的父亲是教授"的符号化:P[f(a)]
  |                           |
  |                           |例5.用谓词表达下列命题: 小张年满18周岁,身体健康,所以他可以参军;
  |                           |    设a:小张; P(x):x年满18周岁; Q(x):x身体健康;R(x):x可以参军;
  |                           ╰    可符号化为:P(a)∧Q(a)→R(a);
  |
  |                ╭1>量词:
  |                |  1>在命题函数中,当其中出现的所有变量均被赋值后,得到的命题的真值也确定下来,但有些
  |                |    命题函数中,使得命题为真或为假的变量值并不是唯一的,即取不同的值时,得到的命题真值
  |                |    是相同的,如:x大于3-->命题函数:P(x),x的值不唯一,如4,5,6...;如何表示x数量关系↓
  |                |
  |                |  2>命题函数中表示数量的词称为量词,可以使用量词来表示 个体常量 与 变项之间 的数量关系,
  |                |    即对命题函数进行量化,换言之就是,有多少个体词能使得命题函数成立;
  |                |
  |                |2>量词的分类---全称量词∀xP(x) 和 存在量词∃xP(x)
  |                |
  |                |*1.∀xP(x)表示P(x)的全称量化,即命题"对x在其论域中的所有取值,P(x)为真命题"
  |                |   ∀称为全称量词 (∀x:x取其论域中的任意值), 论域:x的取值范围 {1,3,5} x有3个取值 1,3,5;
  |                |例1:论域为{4,5},P(x):x大于3-->∀xP(x):任意一个x,P(x)都是真命题; ∀xP(x)<=>P(4)∧P(5)
  |                |
  |                |例2:所有人都需要呼吸的符号化表示: P(x):x是人; Q(x):x需要呼吸;
  |                |   ∀x(P(x)→Q(x)) :表示任何一个x的(P(x)→Q(x))都是真命题;  //∀x(A(x)→B(x))
  |                |
  |                |*2.∃xP(x)表示P(x)的存在量化,即命题"论域中至少存在一个x,使P(x)为真"
  |                |   ∃称为存在量词(∃x:论域中至少存在一个x)
  |                |
  |                |例1:论域为{2,4}, P(x):x大于3-->∃xP(x):存在一个x使得P(x)是真命题;∃xP(x)<=>P(2)∨P(4)
  |                |
  |                |例2:有些人可以活到100岁--> P(x):x是人; Q(x):x可以活到100岁;
  |                |    ∃x((P(x)∧(Q(x)) :表示存在一个x的((P(x)∧(Q(x))真命题; //∃x(A(x)∧B(x))
  |                |
  |                |
  |                |*3.综合练习:
  |                | 1>使用量词表示一下命题:           2>使用量词表示命题: 没有最大的整数;
  |                |   1)所有狮子都是凶猛的动物;         只要一个数是整数,就存在另一个整数比它更大;
  |                |   2)有些狮子不吃肉;                设R(x): x是整数; L(x,y):x小于y;
  |                |   3)有些凶猛的动物不吃肉;           ∀x(R(x)→∃xL(x,y))
  |2.谓词与合式公式<      P(x):x是狮子;
  |                |     Q(x):x是凶猛的动物;          3>使用量词表示命题:每个整数的平方都大于0:
  |                |     R(x):x吃肉;                     设R(x): x是整数 ; L(x): x平方大于0
  |                |    1) ∀x(P(x)→Q(x));               ∀x(R(x)→L(x));
  |                |    2) ∃x(P(x)∧¬R(x));              设R(x):x是整数; p(x):x的平方; L(x):x大于0;
  |                |    3) ∃x(Q(x)∧¬R(x));              ∀x(R(x)→L(P(x)));
  |                |
  |                |*4.谓词合式公式:用¬,∧,∨,→,↔把谓词函数联结起来;
  |                |   例:∀x(P(x)→Q(x)) 或者 ∃x(P(x)∧Q(x));
  |                |
  |                |*5.在∀xP(x) ∃xP(x)中,称 量词∀,∃后面的x为 指导变元,称P(x)为相应量词的辖域,在辖域中,x
  |                |   的一切出现为约束出现,也叫约束变元,除约束出现的其他变元的出现称为自由出现,也叫自由变元;
  |                |   例:∀x(P(x,y)→R(x,z))中,x:指导变元,(P(x,y)→R(x,z))是辖域,x:约束变元,y,z:自由变元;
  |                |
  |                |*6.在谓词公式中,一个变元即可以是约束变元,又可以是自由变元,很容易引起混淆,为了避免混淆,
  |                |   采用下面两个规则改写谓词公式:
  |                |
  |                |   1>自由变量代入规则: 把公式中的某一个自由变元,用该公式中没有出现的个体变元符号替换,
  |                |     且要替换该自由变元在公式中的所有出现处;
  |                |     例:  ∀y(P(x)∧Q(x,y))→∀x(R(x,y)) 的约束变元为 x,y,自由变元为x,y;
  |                |    改写为:∀y(P(z)∧Q(z,y))→∀x(R(x,w))
  |                |
  |                |   2>约束变元改名规则: 将辖域内的 指导变元 及其辖域中所有 约束出现,均改为本辖域中未曾
  |                |     出现过的个体变元,其余不变;
  |                |     例:   ∀y(P(x)∧Q(x,y))→∀x(R(x,y))
  |                |    改写为: ∀z(P(x)∧Q(x,z))→∀w(R(w,y))
  |                |
  |                |*7.前束范式:一个谓词合式公式,如果量词 均在全式的 开头,辖域延伸到整个公式
  |                ╰           的末尾,则称前束范式 示例:∀y(P(x)→Q(y))//只在开头有量词限制
  |
  |             ╭*1.解释:在谓词公式中包含命题变元(关于主语的命题)和个体变元(主语),当个体变元
  |             |        用确定的个体取代,命题变元用确定的命题所取代时,就称作对谓词公式赋值,或解释;
  |             |
  |             |*2.赋值方法:论域为{2,3} ∀xP(x)<=>P(2)∧P(3); ∃xP(x)<=>P(2)∨P(3);
  |             |   ∀x(任意x命题为真)-->将论域内所有x的值代入命题,并将命题列出来,然后合取(∧)计算结果;
  |             |   ∃x(存在x命题为真)-->将论域内所有x的值代入命题,并将命题列出来,然后析取(∨)计算结果;
  |             |
  |             |   例:给定解释如下:论域D={2,3},F(x)的定义如下:F(2)=0,F(3)=1;
<               |   G(x)的定义如下: G(2)=1,G(3)=0,求∀x(F(x)→G(x)的真值;
  |             |   解: ∀x(F(x)→G(x)<=> (F(2)->G(2))∧(F(3)->F(3))<=>(0->1)∧(1->0)
  |             |       <=>(0∨0)∧(1∨1) <=> (0 ∧ 1) <=> 0;
  |             |
  |             |   例:论域是{2,3} ∃x∀yP(x,y) <=> ∀yP(2,y) ∨ ∀yP(3,y)
  |             |                 <=> (P(2,2)∧P(2,3))∨((P(3,2)∧P(3,3))
  |             |
  |             |   例:得定解释如下: 论域D={2,3}
  |             |    P(x,y)的定义如下: P(2,2)=P(3,3)=0; P(2,3)=P(3,2)=1;
  |             |    Q(x,y)的定义如下: Q(2,2)=Q(3,3)=Q(2,3)=0; Q(3,2)=1;
  |             |   求∃x∃y(P(x,y)) ∧ Q(x,y))的真值;
  |             |   解(P(2,2)∧Q(2,2))∨(P(3,3)∧Q(3,3))∨(P(2,3)∧Q(2,3))∨(P(3,2)∧Q(3,2))
  |             |     =0∨0∨0∨1
  |             |     =1 ;
  |             |
  |             |    例(真) 设解释I如下:D={2,3}, 已知F(2,2)=F(3,3)=0, F(2,3)=F(3,2)=1,f(2,2)=f(2,3)=2,
  |             |       f(3,2)=f(3,3)=3. 求谓词公式(∀x)(∀y)(F(x,y)→F(f(x,y),x))在I下的真值 (代数)
  |             |       (∀x)(∀y)(F(x,y)→F(f(x,y),x))
  |             |    <=>(F(2,2)→F(f(2,2),2)) ∧ (F(3,3)→ F(f(3,3),3))
  |             |       ∧ (F(2,3)→F(f(2,3),2))∧(F(3,2)→F(f(3,2),3))
  |             |    <=>(0→F(2,2))∧(0→F(3,3))∧(1→F(2,2))∧(1→F(3,3))
  |             |    <=>(1∨0)∧(1∨0)∧(0∨0)∧(0∨0)<=> 1∧1∧0∧0=0;   // p→q <=> ¬p∨q;
  |3.谓词演算的 <
  | 等价式和蕴涵式
  |             |*3.谓词的等值公式
  |             |   给定两个谓词公式A,B,若对A和B的任何一个赋值,所得命题的真值相同,
  |             |   则称谓词公式A,B等价,记作 A<=>B;
  |             |
  |             |   *常用的谓词等值公式: ¬∃xP(x) <=> ∀x¬P(x) (不存在 <=> 任何一个都不)
  |             |    P(x):x是一个长命百岁的人;
  |             |    ¬∃xP(x): 不存在长命百岁的人; <=> ∀x¬P(x): 任何一个人都不能长命百岁;
  |             |    ¬∀xP(x) <=> ∃x¬P(x) (并不是所有都是 <=> 存在一个不是)
  |             |    ¬∀x(并不是所有)  ∃x¬ (存在一个不是)   ∀ 对应 →    ∃ 对应 ∨
  |             |    ∀x(A(x)∧B(x))<=>∀xA(x)∧∀xB(x)
  |             |    ∃x(A(x)∧B(x))<=>∃xA(x)∧∃xB(x)  //存在且,存在或,任意且,任意或可以直接去括号;
  |             |
  |             |   例: 等值演算:∀x(A(x)→B) <=> ∃xA(x)→B
  |             |               ∀x(¬A(x)∨B) <=> ∀x¬A(x) ∨ B   ∀xB <=> B //没有x所以对B无影响,可消掉
  |             |                                               <=> ∀x¬A(x)<=>¬∃xA(x)
  |             |               ∃xA(x)→B     <=>  ¬∃xA(x) ∨ B  (任何一个都不)<=> (不存在)
  |             |
  |             |   例: 证明下列谓词公式为永真式∀y(∀xA(x)->A(y))
  |             |       //如果括号外量词的指导变元不能指导括号里的某些项,
  |             |       //在实行分配律的时这些无关项可以不带括号外的量词;
  |             |       <=> ∀y(¬∀xA(x)∨A(y)) //去箭头
  |             |       <=>¬∀xA(x)∨∀yA(y) //分配律
  |             |       <=>¬∀xA(x)∨∀xA(x) //∀yA(y) <=>∀xA(x)  (因为x与y的论域相同,故可以替换)
  |             |       <=> 1; //永真式
  |             |
  |             |   例: 证明下列谓词公式为永真式 ∀y(A(y)->∃xA(x)) //x,y 论域相同
  |             |       <=> ∀y(¬A(y)∨∃xA(x)) //→后的项不变,只有→号前面的变(会变为相反命题)
  |             |       <=> ∀y¬A(y) ∨ ∃xA(x)
  |             ╰       <=> ¬∃xA(x) ∨ ∃xA(x) <=> 1 ;//永真式
  |
  |                   ╭1.常用的推理公式:
  |                   |  1> A→B <=> ¬B→¬A ;    2> A→B, B→C => A→C ;    3> A, A→B =>B ;
  |                   |
  |                   |  *证明1 A→B <=> ¬B→¬A  //¬A∨B <=> B∨¬A <=> ¬B→¬A
  |                   |
  |                   |  *证明2 A→B, B→C => A→C //(A→B)∧(B→C) => (¬A∨B)∧(¬B∨C) =>(¬A∨B∧¬B)
  |                   |        ∨(B∧¬B∨C) =>¬A∨C => A→C //B∧¬B为0析取时忽略,故真值取决于A→C的值;
  |                   |
  |                   |  *证明3 A, A→B =>B  => A∧(A→B) => A∧(¬A∨B) => A∧B => B //A为真,真值取决于B;
  |                   |
  |                   |2.消去和添加量词的规则
  |                   | 1>存在量词消去规则,记为∃-
  |                   |   ∃xP(x)为真,则在论域中存在一个个体c,使得P(c)为真;
  |                   |   ∃xP(x) => P(c) ;
  |                   |
  |                   | 2>全称量词的消去规则,记为∀-
  |                   |   若∀xP(x)为真,且c是论域的任意一个个体,则P(c)为真;
  |                   |   ∀xP(x) => P(c);
  |                   |
  |                   | 3>存在量词引入规则,记为∃+
  |                   |   如果已知论域中某个个体c使得P(c)为真,则∃xP(x)为真;
  |                   |    P(c) => ∀xP(x);
  |                   |
  ╰4.谓词演算推理理论 <
                      |
                      |3.利用以上规则进行谓词演算推理:
                      |  例:符号化下列命题,并构造推理证明,一个人只有努力,才能获得成功; 每个人
                      |     或者获得成功,或者曾经失败过;有些人未曾失败过,所以有些人很努力;
                      |     P(x) : x努力 ; Q(x) : x获得成功; R(x) x曾经失败过
                      |     前提1: ∀x (Q(x)→P(x)) //只有努力,才能获得成功 只有..才  q->P
                      |     前提2: ∀x (Q(x)∨R(x)) //每个人或者获得成功,或者曾经失败
                      |     前提3: ∃x¬R(x) //有些人未曾失败过
                      |     结论: ∃xP(x)//有些人很努力
                      |
                      |  证明过程:
                      |  草稿:∃x¬R(x) =>¬R(c) //从存在x证明到存在x ,c就是x论域内存在的特值
                      |       ∀x (Q(x)→P(x)) => Q(c)→P(c)
                      |       ∀x (Q(x)∨R(x)) => Q(c)∨R(c) => ¬Q(c)→R(c) => ¬R(c)→Q(c) //见证明1
                      |       ¬R(c)→Q(c) , Q(c)→P(c) => ¬R(c) → P(c) //见证明2
                      |       ¬R(c) , ¬R(c) → P(c) =>P(c) =>∃xP(x)
                      |
                      |  书写答案:
                      |  (1) ∃x¬R(x)          P规则
                      |  (2) ¬R(c)            ∃-(1)
                      |  (3) ∀x (Q(x)→P(x))   P规则
                      |  (4) Q(c)→P(c)        ∀-(3)
                      |  (5) ∀x (Q(x)∨R(x))  P规则
                      |  (6) Q(c)∨R(c)        ∀-(5)
                      |  (7) ¬Q(c)→R(c)        T(6)
                      |  (8) ¬R(c)→Q(c)        T(7)
                      |  (9) ¬R(c) → P(c)      T(8)(4)
                      |  (10)P(c)              T(2)(9)
                      ╰  (11)∃xP(x)            ∃+(10)

第四章 集合

                            ╭1.若元素a是集合A中的元素,则称a属于A,记为a∈A,否则a∉A 例:1∈{1,2} 4∉{1,2} ;
                            |2.集合的相等:设A和B是任意两个集合,A=B,当且仅当它们含有 相同的元素.
               ╭1.集合概念 <
               |            |3.集合A包含的元素个数称为集合的 基数, 记为 |A|,例A={1,2,3} 集合A的基数为3;
               |            ╰4.空集:不包含任何元素的集合为空集, 记为∅, |∅|=0;
               |
               |               ╭1.列举法:
               |               |  将集合中的元素 一一列举出来, 并用大括号括起全部元素,元素之间以逗号分隔;
               |               |  示例: 设S={1,2,3,5,7} B={x∈S且是奇数},则B={1,3,5,7}
               |               |
               |               |2.描述法:使用谓词来刻画集合元素的性质,将集合记为S={x|P(x)},
               |               |  S={x|P(x)}表示如果P(b)为真时,b是集合S中的元素; 例如:集合S={x|x是偶数}
  ╭*1.基本概念 <                |
  |            |               |3.图示法:
  |            |               |  用封闭的曲线表示集合及其关系,这种图称为文氏图(韦恩图) 例:S=A∩B 两圆相交;
  |            |               |
  |            |               |*各表示法的使用场景:
  |            |               | 描述法或列举法: 关注集合中元素的具体值时:
  |            |               | 图示法: 仅关注集合间的关系时;
  |            ╰*2.集合的表示法<
  |                            |
  |                            |4.子集:设A、B是任意两个集合,若A的每一个元素都属于B,则称A是B的子集,
  |                            |       或者A 包含于 B,记作:A⊆B 例:A{1,2} B{1,2,3,4}
  |                            |       任何集合都是自身的子集;空集是任何集合的子集 A⊆A   ∅⊆A
  |                            |       A⊆B <=> ∀x(x∈A→x∈B) 任意两集合A,B 有 A=B <=>A与B互为子集;
  |                            |
  |                            |5.真子集:如果A的每一个元素都属于B,但B中至少有一个元素不属于A,
  |                            |        则称A为B的真子集,记作:A⊂B
  |                            |
  |                            |6.全集:设所有集合都是集合E的子集,称E为全集; //全集相当于论域
  |                            |
  |                            |7.幂集:设A是任意集合,以A的所有子集为元素,组成的集合,称为集合A的幂集,记做P(A)
  |                            |  示例: A={1,2},求P(A);
  |                            |  A的子集有∅ ,{1}, {2},{1,2}
  |                            |  ℘(A)-->P(A)={∅ ,{1}, {2},{1,2}};  //℘ 脚本字体的P, 书面试卷可以写这个
  |                            ╰  若集合A有n个元素,则A的幂集P(A)有 2^n个元素
  |
  |              ╭*1.交,A∩B:由集合A和B的共同元素组成的集合,称为A和B的交集, A∩B={x|(x∈A)∧(x∈B)}
  |              |
  |              |*2.并,A∪B:由属于A或者属于B的元素组成的集合,称为A和B的并集, A∪B={x|(x∈A)∨(x∈B)}
  |              |
  |              |*3.差,A-B:由属于A但不属于B的元素组成的集合,称为A和B的差集, A-B={x|(x ∈A)∧(x∉B)}
<  *2.集合的运算 <
  |              |*4.补,~A:由不属于A的元素组成的集合,称为A补集, ~A=E-A={x|(x∈E)∧(x∉A)}
  |              |
  |              |*5.对称差,A⊕B:其元素要么属于A,要么属于B,但不能既属于A又属于B,
  |              |         A⊕B=(A∪B)-(A∩B);//将集合A与B的重叠部分删除 ,A⊕A= ∅  A⊕∅ = A
  |              ╰   例:A={1,2,3}, B={3,4,5}   A⊕B={1,2,4,5}  例2:A={1,2}, B={1,2,5}  A⊕B={5}
  |
  |                 ╭1. A-B = A ∩ ~B =A-(A∩B)
  |                 |2. 结合律:(A ∩ B) ∩ C=A ∩ (B ∩ C) ;  (A ∪ B) ∪ C=A ∪ (B ∪ C)
  |                 |3. 分配律:A∩(B∪C)= (A∩B)∪(A ∩ C) ;  A ∪(B ∩ C)=(A ∪ B) ∩ (A ∪ C)
  |                 |4.德摩根律: ~(A∪B)= ~A ∩ ~B         ~(A ∩ B)=~A ∪ ~B
  |*3.集合运算恒等式<
  |                 |例:A,B,C是集合,证明(A-B)-C=A-(B∪C)
  |                 |   (A-B)-C=> A ∩ ~B ∩ ~C
  |                 ╰   => A ∩ ~(B∪C) =>A-(B∪C)
  |
  |             ╭1.有序对:由两个元素x和y(允许x=y)按一定顺序排列成的二元组称为一个 有序对 或 序偶,
  |             |        记作<x,y>,或(x,y);  x是有序对的 第一元素,y是 第二元素;
  |             |
  |             |  *之所以称为有序对,是因为有序对中的两个元素的次序一般是不能对换的,x≠y时,<x,y>≠<y,x>
  |             |  *集合是无序的, {1,2}={2,1} ; 有序对是有顺序的,<1,2> ≠ <2,1>
  |             |
  |             |2.笛卡尔积:
  |             |  设A,B为集合,用A中元素x为第一元素,B中元素y为 第二元素 构成有序对,
  |             |  所有这样的有序对组成的集合称作A和B的 笛卡尔积 也称为 直积,记作 A * B
  |             |  笛卡尔积的符号化表示为 A * B={<x,y>|x∈A∧y∈B}
  ╰*4.有序对与 <
      笛卡尔积     笛卡尔积运算具有以下的性质:
                | 1>对任意集合A, A*∅=∅,∅*A=∅;//笛卡尔积中的元素是有序对,顺序不能变↓;
                | 2>笛卡尔积不满足交换律,即当A≠∅∧B≠∅∧A≠B时,A*B≠B*A;
                | 3>笛卡尔积不满足结合律,即当A≠∅∧B≠∅∧C≠∅时,(A*B)*C≠A*(B*C)
                |
                |  例:A={1,2},B={3,4},A*B={<1,3>,<1,4>,<2,3>,<2,4> }
                |  *1.注意第一元素与第二元素已定位,顺序不能倒换;  //|A| 集合A中元素的个数--基数
                |  *2.若集合A有m个元素,集合B有n个元素,则 A*B 有 m*n个有序对元素; |A*B|=|A|*|B|
                |
                |  例:设集合A={1,2,3},集合B={a,b,c,d,e},则|AxB|=3*5=15, |P(A)XB|=8*5=40;
                |
                ╰  A*(B∪C)=(A*B)∪(A*C) 可以去括号但顺序不能变;


第五章 关系与函数

                           ╭关系:给定任意集合A和B,若R⊆A*B,则称R为从A到B的二元关系,特别在A=B时,称R为A上的
                           |     二元关系,可见R是有序对的集合,若<x,y>∈R,则也表示为xRy -> <x,y>∈R <=>xRy
                           |     关系就是表示集合X到集合Y的笛卡尔积的子集;
                           |
                           |1>关系集合:
                           | 1.若集合R是A*A的子集,则称R是集合A上的二元关系,简称 关系(有序对的集合)
                           |   例:A={1,2},A*A={<1,1>,<1,2>,<2,1>,<2,2>},A*A的任何一个子集都是A上的关系;
                           |   如:R={<1,1>,<2,2>}是A上的关系;
                           |
                           | 2.若集合R是A*B的子集,则称R是从A到B的关系;
                           |   例:A={1,2},B={3,4}, A*B={<1,3>,<1,4>,<2,3>,<2,4>}
                           |   R={<1,3>,<1,4>}是从A到B的关系;
                           |
                           | 3.称IA={<x,x>|x∈A}为A上的 恒等关系
                           |   例:A={2,3},则A上的恒等关系为 IA={<2,2>,<3,3>}
                           |
                           | 4.称A*A为A上的全域关系 A={1,2},A*A={<1,1>,<1,2>,<2,1>,<2,2>}
                           |
                           | 5.设R是集合A上的关系,R中每一个有序对的第一元素构成的集合,称为R的定义域,
                           |   记为domR, R中每一个有序对的 第二元素 构成的集合,称为R的值域,记为ranR;
                           |   例:R={<1,1>,<1,2>,<2,2>,<2,3>} domR={1,2}  ranR={1,2,3}
                           |
                           |   例:设R={<3,1>,<2,3>,<5,3>,<3,4>}是集合A={1,2,3,4,5}上的关系,
                           |      则 domR={2,3,5} , ranR={1,3,4};
            ╭*1.定义及表示 <
            |              |2>关系矩阵:
            |              |  例:A={1,2},R={<1,1>,<2,2>}是A上的关系;
            |              |  设x1=1,x2=2,则A={x1,x2},R={<x1,x1>,<x2,x2>}
            |              |  可用关系矩阵表示集合A上的关系R:
            |              |                                ╭1 0╮
            |              |                                ╰0 1╯
            |              |  即:设集合A={x1,x2,x3,x4},若<xi,xj>∈R,则R的 关系矩阵
            |              |     的第i行,第j列为1,其他位置为0;
            |              |
            |              |  真题.设R={<1,3>,<1,4>,<2,3>,<3,1>,<3,4>,<4,2>}
            |              |       是A={1,2,3,4}上的关系,请写出R的关系矩阵;
            |              |        ╭0,0,1,1╮
            |              |        │0,0,1,0│
            |              |        │1,0,0,1│
            |              |        ╰0,1,0,0╯
            |              |
            |              |3>关系图(有向图)
            |              |  设集合A={x1,x2,x3,x4},若<xi,xj>∈R,则自xi到xj画一条有向边;
            |              |  设R={<1,4>,<2,1>,<2,3>,<3,1>,<4,2>,<4,3>}是A={1,2,3,4}上的关系,
            |              |  请画出R的关系图:
            |              |
            |              |                 3
            |              |             ↙  ↑  ↖
            |              |            1← ← ↑← ← 2
            |              |              ↘ ↑  ↗
            |              ╰                 4
  ╭*1.关系 <
  |         |              ╭前提:设R是集合A上的关系:
  |         |              |关系R包含以下5种性质:自反性,反自反性,对称性,反对称性,传递性;
  |         |              |
  |         |              |1> 若∀a∈A,必有<a,a>∈R,则称R是 自反的 换言之,A中每一个元素与其自身相关。
  |         |              |   即R是A上的自反关系<=> ∀x(x∈A → <x,x>∈R)  //<x,x> 自己和自己有关系
  |         |              |   例:A={1,2,3},R={<1,1>, <2,2>, <3,3>}
  |         |              |   自反的关系矩阵:则关系矩阵的对角线(左上--右下)上的每个元素都为1;
  |         |              |        ╭1 0 0╮
  |         |              |        │0 1 0│
  |         |              |        ╰0 0 1╯
  |         |              |
  |         |              |2> 若∀a∈A,必有<a,a>∉R,则称R是 反自反 的
  |         |              |   例:A={1,2,3},R={<1,2>, <1,3>, <2,1>, <2,3>, <3,1>, <3,2>}
  |         |              |   反自反的关系矩阵:则关系矩阵的对角线(左上--右下)上的每个元素都为0;
  |         |              |        ╭0 1 1╮
  |         |              |        │1 0 1│
  |         |              |        ╰1 1 0╯
  |         |              |
  |         ╰*2.关系的性质<
  |                        |3>若<a,b>∈R,必有 <b,a>∈R,则称R是 对称 的 (关系矩阵 rij=rji,即为对称矩阵);
  |                        |  例:A={1,2,3},R={<1,2>, <2,1>, <1,1>, <2,2>} //{<a,b> <b,a>}
  |                        |  对称的关系矩阵:则关系矩阵的对角线的两边的元素都是对称相等的;
  |                        |        ╭1 1 0╮         ╭* 1 0╮
  |                        |        │1 1 0│         │1 * 0│
  |                        |        ╰0 0 0╯         ╰0 0 *╯
  |                        |
  |                        |4>若<a,b>∈R,必有<b,a>∉R,则称R是 反对称 的;
  |                        |  例:A={1,2,3},R={<1,2>,<1,3>}或 R={<1,2>,<2,3>,<3,1>}
  |                        |  反对称的关系矩阵rij和rji不能同时为1,即关于对角线对称的元素不能同时为1;
  |                        |        ╭0 1 1╮         ╭0 1 0╮
  |                        |        │0 0 0│         │0 0 1│
  |                        |        ╰0 0 0╯         ╰1 0 0╯
  |                        |
  |                        |5>若<a,b>∈R,<b,c>∈R, 必有<a,c>∈R,则称R是 传递 的 (传递后得到的元素还在R中);
  |                        |  例1:A={1,2,3},R={<1,2>, <2,3>, <1,3>} //{<a,b>, <b,c>, <a,c>}
  |                        |  例2:A={1,2,3,4},R={<1,3>, <1,4>, <2,3>,<2,4>,<3,4>,<4,4>}
  |                        |  *例2中<1,3> <3,4> 传递后得出<1,4>在集合R中所以符合传递性
  |                        |
  |                        |*综合示例:
  |                        | 设R={<1,4>,<2,1>,<2,3>,<3,1>,<4,2>,<4,3>},是A={1,2,3,4}上的关系,
  |                        | 说明R是否具有自反,反自反,对称,反对称性质;
  |                        | <1,1>,<2,2>,<3,3>,<4,4>都∉R,所以R是反自反的,不是自反的;
  |                        ╰ 任何一个<a,b>∈R,<b,a>∉R,所以R是反对称的,不是对称的;
  |
  |              ╭1>设集合R是集合A上的关系,将R中每个有序对的元素顺序互换,可得到R的 逆关系,简称R的逆,记为R^-1
  |              |  例:R={<1,2>,<2,3>} , R^-1={<2,1>,<3,2>} //R={<a,b>,<c,d>} R^-1={<b,a>,<d,c>} ;
  |              |
  |              |  关系的常规运算:"交","并","逆"
  |              |   1.(R^-1)^-1=R,   2.(R∩S)^-1=(R^-1)∩(S^-1)
  |              |   3.(R∪S)^-1=(R^-1)∪(S^-1)  4.若R⊆S,则R^-1⊆S^-1
  |              |
  |              |   证明2,3推理如下:                         证明4推理如下:
  |              |   R={<1,2>,<3,4>},S={<3,4>,<5,6>}         R={<1,2>},S={<1,2>,<3,4>}
  |              |    =>R∩S={<3,4>} ,(R∩S)^-1={<4,3>}         =>R^-1={<2,1>},S^-1={<2,1>,<4,3>}
  |              |   R^-1={<2,1>,<4,3>},S^-1={<4,3>,<6,5>}    =>R^-1⊆S^-1
  |              |       =>R^-1∩S^-1={<4,3>}
  |              |
  |              |2>复合关系
  |              | *1.设集合R,S都是关系,RοS 为R和S的复合关系,表示 RοS={<x,y>|<x,t>∈R,<t,y>∈S}
  |              |    例1:R={<1,2>},S={<2,1>,<2,3>} => RοS ={<1,1>,<1,3} //复合就是两不同集合间进行传递
  |              |    例2:R={<2,3>},S={<1,2>,<2,3>,<3,2>,<3,3>} => RοS ={<2,2>,<2,3>}
  |              |    例3:R={<1,2>,<2,3>},S={<2,3>,<3,4>} => RοS ={<1,3>,<2,4>}
  |              |
  |              | *2.RοR记为R²
  |              |    例R={<1,2>,<2,2>,<2,3>} =>R²={<1,2>,<1,3>,<2,2>,<2,3>}
  |              |
  |              | 综合题:设集合A={1,2,3,4},A上的关系R={<1,1>,<2,1>,<3,2>,<4,3>},求R²和R^-1;
  |              |        R²={<1,1>,<2,1>,<3,1>,<4,2>}  R^-1={<1,1>,<1,2>,<2,3>,<3,4>};
  |              |
  |              | *若R与S是自反的,则RοS也是自反的:
  |              |  证明:设A={<a,b>},R={<a,a>,<b,b>} ,S={<a,a>,<b,b>} => RοS={<a,a>,<b,b>}
<  *2.关系的运算 <
  |              |
  |              |3>关系的闭包
  |              |  作用:关系的某些性质非常有用,例如自反性,对称性及传递性,但任给一个关系R,都不能保证R
  |              |  一定具有这些性质,如果在R中添加必要的二元组形成新的关系R',可使R'具有自反性,对称性
  |              |  及传递性,得到的新关系称为原关系的 闭包;
  |              |
  |              |  设R是非空集合A上的二元关系,若关系R'满足下列条件:
  |              |  1> R'是自反的(对称的或传递的)
  |              |  2> R⊆R';
  |              |  3> 对于A上的任何包含R的自反的(对称的或传递的) 关系R'',有R'⊆R'';
  |              |  称R'为R的自反(对称,传递)闭包,记做r(R) (s(R) 或 t(R) )
  |              |
  |              |  设R是A上的关系,在R的基础上进行 最小的扩充 即可得到R的 闭包:
  |              |  r(R)是自反闭包,  s(R)是对称闭包,  t(R)是传递闭包; (扩展关系R)
  |              |  reflexive(自反) symmetric(对称)  transitive(传递)
  |              |
  |              |  例:A={1,2,3} R={<1,2>,<2,3>}
  |              |  r(R)={<1,2>,<2,3>,<1,1>,<2,2>,<3,3>}
  |              |  s(R)={<1,2>,<2,3>,<2,1>,<3,2>}
  |              |  t(R)={<1,2>,<2,3>,<1,3>}
  |              |
  |              |  例:设集合A={a,b,c,d}以及A上的一个二元关系R={<a,b>,<b,c>},
  |              |     求对称闭包s(R),和传递闭包t(R);
  |              |     s(R)={<a,b>,<b,c>,<b,a>,<c,b>}
  |              ╰     t(R)={<a,b>,<b,c>,<a,c>}  //闭包是对关系达成条件做最小的拓充
  |
  |
  |                   ╭1>相容关系:设P是集合A上的关系,若P是自反的,对称的,则称 P是A上的 相容关系;
  |                   |2>等价关系:设R是集合A上的关系,若R是自反的,对称的,传递的,则称R是A上的 等价关系;
  |                   |  *1.设R为等价关系,若<x,y>∈R,称x等价于y,记作x~y;
  |                   |  *2.等价关系例如:
  |                   |     1.三角形相似关系是等价关系;// 三角相等,三边成比例的两个三角形
  |                   |     2.人类集合中的"同龄","同乡"关系,住校学生的"同寝室关系" 都为等价关系;
  |                   |     3.对任意集合A,A上的恒等关系IA和全域关系EA是等价关系;
  |                   |
  |                   |  *3.等价关系的证明:
  |                   |     Z是整数集,在Z上定义一个二元关系R:对于任意的x,y∈Z,
  |                   |     (x,y)∈R当且仅当x与y被5除余数相同.R是Z上的等价关系;
  |                   |     显然,x与y被5除,余数相同的充要条件是5|(x-y),这里符号a|b表示a整除b,(b/a)
  |                   |     a与b是两个整数. x%5==y%5 <=> (x-y)%5=0, => x=13,y=8, x%5=3;y%5=3
  |                   |
  |                   |     对于∀x∈Z,有5|(x-x),即(x,x)∈R, 即R有自反性
  |                   |     对于∀x,y∈Z,若(x,y)∈R,即5|(x-y)=>5|(y-x),所有(x,y)和(y,x)∈R,即R有对称性;
  |                   |     对于∀x,y,z∈Z,若(x,y)∈R且(y,z)∈R 即5|(x-y)且5|(y-z) 则5|((x-y)+(y-z))
  |                   |     =>5|(x-z)=> (x,z)∈R,即 R有传递性; 故R是A上的等价关系;(R有自反性,传递性,和对称性;)
  |                   |
  |                   |例2:A={1,2,3},R={<1,1>,<2,2>,<3,3>,<1,3>,<3,1>} //是相容关系且是等价关系
  |                   |    R={<1,1>,<2,2>,<3,3>,<1,3>,<3,1>,<1,2>,<2,1>}//相容但不等价;因为没有<3,2>
  |                   |
  |                   |*结论:
  |                   | 若R,S是集合A上的相容关系(等价关系),则 R∩S,R∪S,R^-1,S^-1(交并逆)
  |                   | 一定也是相容关系(等价关系),但RοS(复合运算)不一定是相容关系(等价关系)
  |                   | A={a,b,c}, R={<a,a>,<b,b>,<c,c> <a,b>,<b,a>,<b,c>,<a,c>}
  |                   | *1.自反性:集合A中所有的元素与自己组成的有序对<a,a> <b,b> <c,c>属于关系R;
  |                   | *2.对称性:集合A中不同的两个元素的组合以及这两个元素的逆序组合都属于关系R;
  |                   | *3.传递性:集合A中 <a,b>,<b,c>,<c,a>都属于关系R;
  |                   | *若R和S都是自反的,则 RoS也是自反的 (复合关系只能保持自反,其他关系不确定)
  |                   |
  |                   |综合题:
  |                   | 设A={<a,b>|a,b为正整数},在A上定义二元关系~如下:
  |                   | <a,b>~<c,d>当且仅当a+b=c+d,证明:~是一个等价关系;
  |                   | 例题分析:
  |                   | <a,b>叫做a和b有关系, <a,b>~<c,d> <=> < <a,b> , <c,d> >∈ ~ //(a,b)与(c,d)有关系↓
  |                   | 在A上的二元关系~ :a,b,c,d∈Z,若a+b=c+d(~中组成元素内部关系)则< <a,b>,<c,d> >∈ ~
  |                   | 即~={<<a,b> , <c,d>>| a+b=c+d 且 a,b,c,d为正整数}
  |                   | 证:
  |                   | 1>自反性: x+y=x+y =>  即<x,y>~<x,y>;所以~具有自反性:
  |                   |
  |                   | 2>对称性: 若 <<x,y> , <p,q>>∈~ 则 <<p,q> , <x,y>>∈~即:若<x,y>~<p,q>则<p,q>~<x,y>
  |                   |          因为<x,y>~<p,q> => x+y=p+q ; p+q=x+y 所以<p,q>~<x,y> ~具有对称性;
  |                   |
  |                   | 3>传递性:若<x,y>~<p,q>则<p,q>~<s,r> 则 <x,y>~<s,r>
  |                   |          x+y=p+q; p+q=s+r;=> x+y=s+r 所以~具有传递性
  |                   | 由1>,2>,3>证明得出 ~是一个等价关系;
  |                   |
  |                   |3>集合A的划分:
  |                   | *1.给定非空集合A,若有集合S={s₁,S₂,...Sm},其中Si⊆A,Si≠∅(1≤i≤m),且Si∩Sj=∅(i≠j),
  |                   |          m
  |                   |    同时有∪ Si=A;(S₁∪S₂...∪Sm=A),称集合S是A的划分,每个Si(1<i<m)称为一个 分块;
  |                   |         i=1
  |                   |    例:A={1,2,3}, 则A的划分有:
  |                   |    {{1},{2},{3}},    *1.集合A有几个划分,就有几个等价关系;
  |                   |    {{1},{2,3}},         每个划分中分块是无序的,改变分块顺序,不能产生新的划分;
  |                   |    {{1,2},{3}},
  |                   |    {{2},{1,3},       *2.每种划分内部的各分块也是一个集合,且该分块与划分内的
  |                   |    {{1,2,3}}}           其他分块没有交集(交集为空);且与其他全部分块的并集为A;
  |                   |
  |                   |  *2.设{S1,S2,...}是集合A的一个划分,定义关系R:当a,b
  |                   |     同属一个划分块的时候,<a,b>∈R,则R是A上的等价关系;
  |                   |
  |                   |    例:A={1,2},则{{1},{2}}是集合A的一个划分, {{1,2}}也是集合A的一个划分;
  |                   |    由划分{{1},{2}}可得等价关系 {<1,1>,<2,2>}
  |                   |    由划分{{1,2}}可得等价关系 {<1,1>,<2,2>,<1,2>,<2,1>}
  |                   |    {{1,2},{3}}可得等价关系:{<1,1>,<2,2>,<1,2>,<2,1>,<3,3>}
  |                   |
  |*3.等价关系与序关系<
  |                   |
  |                   |4>序关系
  |                   |  设R是非空集合A上的关系,若R满足自反的性,反对称的性,传递性,则称R是A上的一个
  |                   |  偏序关系,记作 ≤; 集合A和集合A上的偏序关系≤一起称为偏序集,记为 <A,≤>;
  |                   |
  |                   |  等价关系 a=b,b=c,a=c, b=a, a=a;  序关系 a<b,b<c,a<c, a≤a,
  |                   |              传递       对称  自反             传递    自反   不对称
  |                   |   偏序关系的举例:
  |                   |   例:整除关系 ≤是整数集上的偏序关系
  |                   |   例:集合的包含关系也是偏序关系;
  |                   |
  |                   |5>覆盖:设偏序集<A,≤>,若a<b(若a≼b,且a≠b,则称a<b),且不存在c使a<c<b,则称b是a的覆盖;
  |                   |
  |                   |              ╭1.若a≼b,则将a画在b的下方;
  |                   |  哈斯图表示法<
  |                   |              ╰2.若b覆盖a,在a与b之间画一条边;
  |                   |
  |                   |  例:<A,≼>是一个偏序集,其中A={1,2,3,4,6,12},≼为A上的整除关系,(a≤b|a/b且余数为0;)
  |                   |    列出A中所有元素的覆盖;并用哈斯图表示出来;
  |                   |    覆盖关系:1<2,1<3, 2<4,2<6,3<6,4<12,6<12;
  |                   |    1的覆盖为2,3; 1<2<4 所以 1≮4(4不是1的覆盖),同理1≮6 和 1≮12
  |                   |    2的覆盖为4,6; 2<6<12 所以 2≮12(12不是2的覆盖,它和2之间隔着6,要覆盖也是覆盖6)
  |                   |    3的覆盖为6;   3<6<12 同上;      12
  |                   |    4的覆盖为12;                   / \
  |                   |    6的覆盖为12;  哈斯图→          4  6
  |                   |                                  \ / \
  |                   |                                   2   3
  |                   |                                    \ /
  |                   |                                     1
  |                   |6>最大、最小元 和 极大、极小元
  |                   |  *1.最大元:若x比A中所有元素都大,称x是A的 最大元;
  |                   |  *2.最小元:若x比A中所有元素都小,称x是A的 最小元;
  |                   |  *3.若A中不存在比x更小的元素,称x是A的 极小元;
  |                   |  *4.若A中不存在比x更大的元素,称x是A的 极大元;不能再被整除了
  |                   |   例:设A={1,2,3,4},≤是整除关系,则 1≤1,2≤2,3≤3,4≤4,1≤2,1≤3,1≤4,2≤4;
  |                   |      因为1≤2,1≤3,1≤4,所以1是A的最小元;但4不能整除3 故集合A中没有最大元;
  |                   |      能整除1的只有1,故1是极小元, 能被3整除的只有3,能被4整除的只有4,故 3,4是极大元;
  |                   |
  |                   |7>上界和下界
  |                   |  *1.上界:设B⊆A,a∈A,若a比B中所有元素都大,称a是B的上界;
  |                   |  *2.下界:设B⊆A,a∈A,若a比B中所有元素都小,称a是B的下界;
  |                   |  例:设A={1,2,3,4},≤是整除关系;则1≤1,2≤2,3≤3,4≤4,1≤2,1≤3,1≤4,2≤4; B={1,2}
  |                   |  4能被1整除,也能被2整除,1≤4且2≤4,即4比B中所有元素都大,故4是B的上界;
  |                   ╰  1能整除1,也能整除2, 1≤1,1≤2,即1比B中所有元素都小,故1是B的下界;
  |
  |         ╭1>函数的概念
  |         |  设函数y=f(x)是一个X到Y的二元关系,x是函数定义域,Y是函数值域,记作f:X→Y
  |         |  函数满足以下条件:∀x∈X,存在唯一的y∈Y,使得y=f(x)
  |         |
  |         |2>入射函数:
  |         |  若x不等于y,必有f(x)≠f(y),则称函数f是入射函数,或单射函数
  |         |  例:f: P→Q, 其中P={1,2,3}, Q={1,2,3,4} , f(n)=n+1
  |         |
  |         |3>满射函数:
  |         |  若∀y∈Y,都∃x∈X使得,f(x)=y,则称函数f是满射函数;
  |         |  例: f: P→Q,其中P={1,2,3},Q={2,3,4},f(n)=n+1;
  |         |
  ╰*4.函数 <
            |
            |4>双设函数:
            |  若函数既是单射的,又是满射的,则称f是双射函数;
            |
            |5>只有双射函数存在反函数(反函数:定义域是原函数的值域,值域是原函数的定义域);
            |
            |6>复合函数 fοg:
            |  例:f(x)=2x+1; g(x)=x²
            |     (fog)(x)=2x²+1   相当于 f(g(x))
            |     (gof)(x)=(2x+1)² 相当于 g(f(x))
            |
            |  *复合函数fog和gof的性质:
            |   若f和g都是单射的,则fog,gof是单射的;
            |   若f和g都是满射的,则fog,gof是满射的;
            ╰   若f和g都是双射的,则fog,gof是双射的;


第六章 代数系统的一般概念

               ╭1>代数系统:
               |  由集合A以及定义在集合A上的运算"*"(任意运算)组成的系统,称为一个代数系统,简称为代数,记为<A,*>
               |  *是在集合A上的任意运算 f1,f2,f3,...,fk,可记为 <A,f1,f2,f3,...,fk>;
               |  例:定义在整数集Z上的加法运算系统:<Z,+>,加法代数系统;
               |
               |2>代数系统的封闭性
               |  在代数系统<A,*>中,对于集合A及A上定义的运算*,如果集合A中任意两个元素在进行*运算后,
               |  结果仍在集合A中,则称集合A对于运算*是封闭的;
               |  1) 若∀a,b∈A且a*b∈A,则称运算 * 关于集合A是封闭的;
               |   例如:定义在整数集Z上的加法运算系统:<Z,+>,加法代数系统; 整数+整数=整数;符合封闭性
               |       定义在整数集Z上的除法运算系统:<Z,÷>,除法代数系统; 整数÷整数不一定是整数,不符合封闭性
               |
               |  2) 若a*(b*c)=(a*b)*c,则称运算 * 是可结合的,满足结合律;
               |     加法<Z,+>和乘法<Z,×>满足结合律,
               |     除法<Z,÷> 如 6÷3÷2=1, 6÷(3÷2)=4,不能满足结合律
               |     减法<Z,->,6-3-1=2,6-(3-1)=4 不能满足结合律
               |
               |  3) 若a*b=b*a,则称运算*是可交换的,满足交换律; 加和乘满足,除和减不满足;
  ╭*1.代数系统<
  |            |3>代数系统中的特殊元素:幺元 (单位元)
  |            |  在代数系统<A,*>中
  |            |  1)若∀x∈A,都有e*x=x,则称e为左幺元; 2)若∀x∈A,都有x*e=x,则称e为右幺元;
  |            |  3)当左幺元和右幺元相等时,即e既是左幺元又是右幺元,则称e为幺元(或单位元)
  |            |    即∀x∈A,都有e*x=x*e=x ;例如<z,×>中的1就是一个幺元;
  |            |
  |            |
  |            |4>代数系统中的特殊元素:零元
  |            |  在代数系统<A,*>中,
  |            |  1)若∀x∈A,都有0*x=0;则称0为左零元;2)若∀x∈A,都有x*0=0;则称0为右零元;
  |            |  3)当左零元和右零元相等时,即0既是左零元,又是右零元,则称0是零元;
  |            |    即∀x∈A,都有x*0=0*x=0; 例如<z,×>中的0就是一个零元;
  |            |
  |            |5>代数系统中的特殊元素: 逆元
  |            |  在代数系统<A,*>中,
  |            |  1)若b(逆元)*a=e(幺元),则称b为a的左逆元;若 a*b=e,则称b为a的右逆元;
  |            |  3)当左逆元和右逆元相等时,即b既是左逆元又是右逆元,则称b是a的逆元;
  |            |    即 b*a=a*b=e,记为b=a^-1,即a^-1*a=a*a^-1=e;
  |            |       (a^-1)^-1=a;(a*b)^-1=a^-1*b^-1
  |            |
  |            |   *一个元素要么没有逆元,要么有唯一的逆元;
  |            |    例:在<z,+>,a的逆元是-a; a+(-a)=0, 0是a的幺元: a+0=0+a=a
  |            |       在<Z,x>中,a的逆元是1/a;
  |            |
  |            |    例a={2,3,4,5},a*b=min(a,b),求代数系统<A,*>的幺元与零元
  |            |    解题思路:*运算是min(a,b)也就是求最小值,幺元e符合e*x=x*e=x,
  |            |    a={2,3,4,5}中的幺元是5,因为5是最大的,min(x,5)=min(5,x)=x;
  |            |    零元符合0*x=x*0=0(这里的0只是零元代号),因为min(2,x)=min(x,2)=2,故零元是2;
  |            ╰
  |
  |            ╭1>半群
  |            |  设V=<S,*>是代数系统,*是集合S上的二元运算,若运算*是封闭的
  |            |  (∀a,b∈S,a*b∈S),可结合的(∀a,b,c∈S (a*b)*c=a*(b*c)),
  |            |  则称V为半群; 例如加法<Z,+>和乘法<Z,×>为半群;
  |            |
  |            |2>独异点:若半群<S,*>中存在一个幺元(∀x∈S,x*e=e*x=x),则称<S,*>为独异点;
  |            |
  |            |3>子半群
  |            |  设<S,*>是一个半群,B⊆S,且*在B上封闭,那么<B,*>也是一个半群,通常称<B,*>
  |            |  是半群<S,*>的子半群;//证明:因为*在S上可结合,而B⊆S,且*在B上是封闭的,<B,*>是半群;
  |            |
  |            |3>群:
  |            |  设<G,*>是一个独异点(是半群(运算封闭,符合结合律)且存在幺元),
  |            |  若集合G中每一个元素都有逆元(∀x∈G,x*b(逆元)=b*x=e(幺元)),则称<G,*>为群;
  |            |  例:加法<Z,+>是独异点(∀a∈Z,a的幺元是0,封闭,结合),而且任何元素都有逆元(-a),
  |            |     所以加法<Z,+>是群, 但乘法不是群,乘法是独异点,但0没有逆元 1/0为 ∞ 故没有逆元
  |            |
<  *2.群与半群<
  |            |证明是群:步骤:1>封闭, 2>可结合, 3>有幺元 4>任何元素都有逆元;
  |            |例:在整数集Z上定义一个二元运算*如下:a*b=a+b+1,证明:<Z,*>是群;
  |            | 证:
  |            |   1>封闭性:
  |            |     ∀a,b∈Z,必有a*b=a+b+1∈Z,所以运算是封闭的;
  |            |
  |            |   2>可结合:
  |            |     ∀a,b,c∈Z, a*(b*c)=a*(b+c+1)=a+(b+c+1)+1=a+b+c+2
  |            |     (a*b)*c=(a+b+1)*c=a+b+1+c+1=a+b+c+2=a*(b*c) 即运算是可结合的
  |            |
  |            |   3>有幺元:
  |            |     假设存在幺元e,则a*e=e*a=a+e+1=a,可得e=-1
  |            |     ∀a∈Z 必有(-1)*a=a*(-1)=a-1+1=a 所以-1是<Z.*>的幺元;
  |            |
  |            |   4>Z的任何元素存在逆元
  |            |     假设a的逆元a^-1存在,则a*a^(-1)=a+a^(-1)+1=-1(幺元),
  |            |     可得a+a^(-1)=-2 所以 a^(-1)(逆元)=-a-2;
  |            |     ∀a∈Z,必有(-a-2)*a=a*(-a-2)=-a-2+a+1=-1(幺元) 所以-a-2是a的逆元;
  |            ╰   综上所述,<Z,*>是一个群;
  |
  |
  |          ╭1>设<G,*>是一个群,若运算满足交换律,即a*b=b*a,则称<G,*>是交换群,或Abel群
  |          |2>环:
  ╰*3.环与域<   设<A,+,*>是一个代数系统,+和*是二元运算,如果满足:
             |  1> <A,+>是Abel群; 2> <A,*>是半群;  3> 运算*对于运算+是可分配的;
             ╰3>(群(环(整环(域)))

第七章 格

              ╭1>上界:设<A,≤>是一个偏序集,集合{a,b}是A的子集,若集合A中           f
              |       存在一个元素x满足:a≤x且b≤x,则称x是集合{a,b}的上界;       /  \
              |                                                            d   e
              |2>下界:若A中存在一个元素x满足:x≤a且x≤b,则称x是集合{a,b}的下界;  | ╳ |
              |                                                            b   c
              |例: 如哈斯图所示: {a,b}的上界:b,d,e,f,下界:a; a∨b=b, a∧b=a;  \  /
              |   *偏序可自反,所以上界可以取到b,下界可以取到a;最小上界 最大下界   a
              |   {b,c}的上界:d,e,f 下界:a; 最大下界:b∧c=a,最小上界:d∨c不存在;
              |   {d,e}的上界:f, 下界:b,c,a;最大下界:d∧e不存在,最小上界:d∨e=f;
              |
              |3>最小上界和最大下界                                         f
              |设<A,≤>是一个偏序集,集合{a,b}是A的子集,若集合{a,b}存在唯一     |
              |的最小上界,记为 a∨b;若集合{a,b}存在唯一的最大下界,记为a∧b;    e
  ╭*1.格的概念<                                                           /  \
  |           |4>格:                                                    c    d
  |           |  设<A,≤>是一个偏序集,若∀a,b∈A,{a,b}在A中都有最大下界       \  /
  |           |  (也称为下确界,记为inf{a,b})和最小上界(也称为上确界,记         b
  |           |  为sup{a,b}),则称<A,≤>为 格;最小上界和最大下界有唯一性;        |
  |           |   {c,d} 上界:e f,最小上界:e 下界: a,b 最大下界:b              a
  |           | *|╳|有这种图形就不是格;//格满足交换律,结合律,吸收律,幂等律;不一定满足分配律;
  |           |
  |           |5>交运算和并运算
  |           |  设<A,≤>是一个格,如果在A上定义两个二元运算∧和∨,使得对∀a,b∈A,a∧b等于
  |           |  a和b的最大下界,a∨b等于a和b的最小上界;{a∧b,a,b,a∨b},称<A,∧,∨>为由格
  |           ╰  <A,≤>所诱导的代数系统,二元运算∧,∨分别称为交运算和并运算;
<
  |
  |
  |          ╭1>补元:
  |          |设<A,≤>是格,<A,≤>的最小元记为0,最大元记为1,     图1           图2
  |          |若a∨b=1,且a∧b=0;则称b是a的补元;               1             1
  |          |例:b的补元:b∧e=0;b∨e=1;所以e是b的补元         / \         /  |  \
  |          |   b∧c=0,b∨c=1;所以c是b的补元               d   e       c   d   e
  ╰*2.有补格<                                              |    |       \   |  /
             |格中找补元技巧:                               b   c         \ b /
             |哈斯图中直接相连的两个元素肯定不是补元;          \  /            |
             |若a和b是互补的元,则:                            0              0
             |*1.{a,b}有唯一的上界1(a和b向上延伸的唯一交点(上界)是1),
             |*2.有唯一的下界0(a和b向下延伸的唯一交点(下界)是0);
             |
             |2>有补格:
             ╰  设<A,≤>是格,若A中任何元素都存在补元,则称<A,≤>是有补格;如图1,图2;

第八章 图(Graph)
               ╭1.定义:一个图包含两个部分,顶点(结点) 和 边,用V表示顶点,用E表示边,G=(V,E)表示一个图;
               |                                                          Graph=(Vertex,Edge)
               |2.边可以有方向,也可以无方向;若一个图的所有边都没有方向,称为 无向图;反之都有方向,称为 有向图;
               |
               |3.一个顶点自身连接自身的边称为环,两个顶点之间有多条边为多重边;不含环和多重边的图,称为简单图;
               |
               |     简单图G1                 有向图G2               无向图
               |      0    1                     1                ↻c      d
               |      |\   |                 ↗↙  ↖↘             |______|
               |      | 2  |                 2       3             a       b
               |      |/__\|                 ↘↖  ↙↗               4阶图
               |      3    4                     4
               |                 1,2两顶点有两条边,构成了多重边;  顶点c自己连接自己构成一个环;
               |
               |4.若一个图G的顶点总数为n,则称G为n阶图;//如6个顶点 为6阶图;
               |
               |5.设无向图G=<V,E>,顶点V关联的边数,称为顶点的度数,记为deg(v),若deg(v)为奇数,称为奇顶点;
               |  如G1 deg(3)=3,deg(0)=2,deg(2)=3,deg(4)=3,deg(1)=1 所有顶点的总度数=12; 有6条边
               |  定理1.任何图所有顶点的 度数总和 等于 边数的2倍 ;所以图的顶点度数总和一定是偶数(2*边数)
               |  定理2.奇顶点必有偶数个;
               |        证:1>若deg(v)为奇顶点;则顶点(v)的关联度数为奇数个
               |           2>图的顶点度数总和一定是偶数;//2*边数
               |        综上所述:在图中的必然有偶数个奇顶点;//如果是奇数个,奇数个奇数相加=奇数,与2>矛盾;
  ╭*1.图的概念 <
  |            | 例1.简单无向图G有16条边,每个结点都是2度结点,求G的结点数;
  |            |      总度数=16*2=32; 32/2=16; 设有n个结点 2n=16*2,n=16;
  |            |
  |            | 例2.设简单无向图G有15条边,有3个4度结点,4个3度结点,其余结点均为2,求G中结点的个数;
  |            |     设结点的个数为n,则:3*4+4*3+(n-3-4)*2=15*2;
  |            |     2n-6-8=30-24 => 2n=20 => n=10; 所以 G中有10个结点;
  |            |
  |            | 例3.设无向图G有7个顶点,每个顶点的度数不是4就是5.证明:
  |            |     G中至少有5个度数为4的顶点或至少有4个度数为5的顶点;
  |            |     证明:无向图G有7个顶点,每个顶点的度数不是4就是5,由于度数为5是
  |            |     奇顶点,由定理2可知,它在图G中的总数必定是偶数个,则有以下四种情况;
  |            |     1> 有7个度数为4的顶点;
  |            |     2>有2个度数为5的顶点,5个度数为4的顶点;
  |            |     3> 有4个度数为5的顶点,3个度数为4的顶点;
  |            |     4> 有6个度数为5的顶点,1个度数为4的顶点;
  |            |   综上所述:G中至少有5(5|7)个度数为4的顶点或至少有4(4|6)个度数为5的顶点
  |            |
  |            | 例4.设图G有n个结点,n+1条边,证明:且每个结点的度数都不超过3,
  |            |     证明:图G中至少有2个结点度数等于3的结点;
  |            |   证明: 反证法:
  |            |      1>假设图G中没有度数为3的结点,又因为每个结点度数不超过3,
  |            |        则图G中每个结点度数最大为2, 图G所有结点度数总和最大为2n,
  |            |        所以图G的边数最大为n,与已知G有n+1条边的条件矛盾,故假设不成立,
  |            |
  |            |      2>假设G中只有1个度数为3的结点,则G中必定有1个度数为1的结点,
  |            |        因为奇顶点必须是偶数个,则此时图G的结点总数为2(n-2)+1+3=2n
  |            |        则图G最多有n条边,与已知条件矛盾,故假设不成立.
  |            |
  |            |   综上所述,G中至少有2个度数等于3的结点; //反证法就是假设¬结论成立,推出结论与已知矛盾;
  |            |
  |            |6.有向图的入度和出度
  |            |  设图G=<V,E>是一个有向图,则有:
  |            |  以顶点v为起点的有向边的个数称为v的 出度,以顶点v为终点的有向边的个数称为v的 入度;
  |            |     有向图G2
  |            |      A      → B     最大出度:2 最大入度:2
  |            |    ↙¯¯¯¯¯¯¯¯↗|      A:OD:2 ID:0  B:OD:1 ID:2
  |            |   C--------→D ↓      C:OD:2 ID:1  D:OD:1 ID:2
  |            |    ↘________↖↓      E:OD:0 ID:2  G:OD:2 ID:1
  |            |     E←        G
  |            |
  |            |7.完全图
  |            |  设n阶简单无向图G=<V,E>,每个顶点都与其余的n-1个顶点连接,则称G为n阶完全图;
  |            |     A     定理:n阶完全图中每个顶点度数都为n-1,图中共有n(n-1)/2条边;
  |            |   /   \   3阶完全图K3, A,B,C三个顶点的度数都为n-1=2,共有 3(3-1)/2=6/2=3条边;
  |            ╰  B-—--—C  完全图k6的边的条数为6(6-1)/2=30/2=15 条边;
  |
  |              ╭1.通路:若图G中的两个顶点v₁,V₂可以由几条边连起来,则称V₁、V₂是连通的, 从V₁
  |              |       到V₂的一条路称为通路,通路中的 边数 称为通路的 长度;a到c的长度为2(2条边)
  |              |2.回路: 如果一条通路的起点 和 终点 相同,称为回路; dbcd,
  |              |  a   d     k____g
  |              |  |  ╱│     |   ╱│
  |              |  | ╱ │     |  ╱ │
  |              |  |╱  │     | ╱  │
  |              |  b---c-----e----f
<  *2.图的连通性 <
  |              |3.若图G中任意两个顶点之间都是连通的,称G为连通图;
  |              |
  |              |4.若图G不连通,则图G至少包含2个连通分支;
  |              |  *.n阶的连通图至少有n-1条边,最多为n(n-1)/2条边(完全图)
  |              |  例:一个具有10个顶点的简单连通图的边数至少为9,至多为45;
  |              |
  |              |5.设G是一个简单连通图,若G有一个顶点的度数为a,则G至少有a+1个顶点
  |              |  每个度数都对应一个顶点+本身
  |              ╰
  |
  |                  ╭1.邻接矩阵
  |                  |  设图G=<V,E>,V={v1,v2,v3,v4},用mij表示从顶点vi到vj的边数,
  |                  |  则可得到图G的 邻接矩阵M  (有向图 和 无向图都有连接矩阵)
  |                  |       图G                   图G的邻接矩阵
  |                  |  ↻v1---<---v4             v1  v2  v3  v4    有向图:横向是该顶点的 出度
  |                  |  ↗↗ ↖    ↗↘        v1╭ 1   0   0   0 ╮         纵向是该顶点的 入度
  |                  |  ↖↖    ↖ ↖↙        v2│ 2   0   1   0 │
  |                  |    v2--->---v3         V3│ 1   0   0   1 │   无向图:横向和纵向都是该顶点
  |                  |                        V4╰ 1   0   1   0 ╯         与目标顶点是否有连接;
  |                  |
  |                  | 从vi到vj有n条边,则Mij=n; 例如 从v2到v1有2条边则 M21=2;//第二行第一列
  |                  |
  |                  |2.矩阵的乘法
  |                  |
  |                  |  矩阵的乘法运算:必须在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义;
  |                  |  一个m×n的矩阵就是 m×n个 数排成 m行n列 的一个数阵;
  |                  |     ╭a1,1 a1,2 a1,3╮        ╭b1,1 b1,2 ╮
  |                  |  A= |              │     B= |b2,1 b2,2 │
  |                  |     ╰a2,1 a2,2 a2,3╯        ╰b3,1 b3,2 ╯
  |                  |
  |                  |         ╭a1,1b1,1+a1,2b2,1+a1,3b3,1,   a1,1b1,2+a1,2b2,2+a1,3b3,2╮
  |                  |  C=AB=  |                                                        │
  |                  |         ╰a2,1b1,2+a2,2b2,2+a2,3b3,2,   a2,1b1,2+a2,2b2,2+a2,3b3,2╯
  |                  |
  |                  |        ╭b1,1a1,1+b1,2a2,1   b1,1a1,2+b1,2a2,2   b1,1a1,3+b1,2a2,3 ╮
  |                  |  D=BA= |b2,1a1,1+b2,2a2,1   b2,1a1,2+b2,2a2,2   b2,1a1,3+b2,2a2,3 │
  |                  |        ╰b3,1a1,1+b3,2a2,1   b3,1a1,2+b3,2a2,2   b3,1a1,3+b3,2a2,3 ╯
  ╰*4.图的表示(矩阵) <
                     |  设矩阵A有m行n列(Amn),矩阵B有n行s列(Ans);
                     |  矩阵C=矩阵A×矩阵B= 按矩阵A行由上到下的顺序 从第1行开始按以下列方式进行乘法运算
                     |       => A的第i行第j列的元素(Aij) × B的第j行第k列元素(Bjk) (1≤j≤n) (1≤k≤s)
                     |       =A11×B11+A12×B21+...,+A1(n-1)×B(n-1)1+A1n×Bn1  , ==C11
                     |        A11×B12+A12×B22+...,+A1(n-1)×B(n-1)2+A1n×Bn2  , ==C12
                     |                        ...
                     |        A11×B1s+A12×B2s+...,+A1(n-1)×B(n-1)s+A1n×Bns  , ==C1s
                     |  矩阵C的第一行={C11,C12,...,C1s},依次类推算i=2时 计算第二行的值,一直到第n行
                     |
                     |        A11 A12 A13...A1n
                     |                           B11,B12...B1s   *.使用"--"代表"×"方便观察
                     |                           B21,B22...B2s   A11--B11,A12--B21,...A1n--Bn1, C11
                     |                           B31,B32...B3s   A11--B12,A12--B22,...A1n--Bn2, C12
                     |                               ...              ...          ...         ...
                     |                           Bn1,Bn2...Bns   A11--B1s,A12--B2s,...A1n--Bns, C1s
                     |
                     |       Amn × Bns =Cms==> m×n的矩阵 × n×s的矩阵=m×s的矩阵, m是A行数, s是B是列数
                     |       例:A23×B32=C22 C中有2*2=4个元素
                     |
                     |1>按矩阵乘法法则,AB结果是用A的每行各元素×B的每列各元素形成,一般而言,它不满足交换律,即AB与BA不同。
                     |
                     |2>满足交换的矩阵也是存在的,但还需附加条件(例如:B是一个单位阵时,A总可与B进行乘法交换值不变)
                     |
                     |3.矩阵的平方
                     |  矩阵的平方M²是一个新的矩阵,这个矩阵的mij等于矩阵M的第i行和第j列对应元素乘积之和;
                     |       ╭1 1╮       ╭1 1╮  ╭1 1╮  ╭1*1+1*0  1*1+1*1╮  ╭ 1  2 ╮
                     |    M= |   |   M²= |   | ×|   |= |                |= |      |
                     |       ╰0 0╯       ╰0 1╯  ╰0 1╯  ╰0*1+1*0  0*1+1*1╯  ╰ 0  1 ╯
                     |
                     |4.求图中通路(回路)的数量
                     |  设图G=<V,E>,V={v1,v2,...vn},图G的邻接矩阵为M,
                     |  则M^k的元素 mij 表示顶点 vi 到顶点 vj 长度为k的通路(或回路)的数量;
                     |       图G                   图G的邻接矩阵
                     |  ↻v1---<---v4             v1  v2  v3  v4
                     |  ↗↗ ↖    ↗↘        v1╭ 1   0   0   0 ╮     v1╭ 1   0   0   0 ╮
                     |  ↖↖    ↖ ↖↙    M=  v2│ 2   0   1   0 │     v2│ 2   0   1   0 │
                     |    v2--->---v3         V3│ 1   0   0   1 │     V3│ 1   0   0   1 │
                     |                        V4╰ 1   0   1   0 ╯     V4╰ 1   0   1   0 ╯
                     |
                     |        ╭1 0,0,0╮  M²(邻接矩阵的平方)=> vi 到 vj 长度为2的通路有 mij 条
                     |    M²= |3 0 0 1|  v2到v1长度为2的通路有m21=3条, ,v2到v4长度为2的通路有m24=1条
                     |        |2 0 1 0|  v3到v1长度为2的通路有m31=2条, v4到v1长度为2的通路有m41=2条,
                     ╰        ╰2 0 0 1╯  长度为2的总数为 1+3+1+2+1+2+1=11条 其中回路有3条(m11,m33,m44);

第九章 图的应用

                        ╭*1.可以一笔画出的图(欧拉通路):
                        |  1>连通图,所有顶点都是偶点(度数(关联边数)为偶数),从从任意一点都能一笔画出;(图1)
                        |  2>连通图,有 两个 奇点,从其中一个奇点开始,到另一个奇点结束可以一笔画出;(图2)
                        |  3>其他情况下,一笔不能画出图
                        |
                        |*2.欧拉路
                        |   在连通图G中,经过的 每条边 一次且仅一次的通路,称为欧拉通路;(1> ,2>)
                        |
                        |*3.欧拉图(无奇点)
                        |   若欧拉通路为回路(起点和终点相同),则称欧拉回路,有欧拉回路的图称为欧拉图;
              ╭1.欧拉图<
              |         |
              |         | Kn:n阶完全图 每个顶点的度数都为n-1m,所以若n为奇数,则kn是欧拉图;
              |         |
              |         |        图1                 图2
              |         |  (2) a-----b (2)     (3) a----b (3)      b->e->d->c->a->b->d->a
              |         |       \   /              | \  |\         a->c->d->e->b->d->a->b
              |         |         c  (4)           |  \ | \
              |         |       /   \              |   \|  \
              |         ╰  (2) d-----e (2)     (2) c----d---e (2) (2)
  ╭*1.欧拉图与<
  |   哈密顿图             ╭1.哈密顿路:
  |           |           |  在连通图G中,经过G的 每个顶点 一次且仅一次的通路,称为哈密顿路,
  |           |           |
  |           |           |2.哈密顿图:
  |           |           |  若哈密顿路为回路则称为 哈密顿回路,含有 哈密顿回路 的图称为 哈密顿图;
  |           ╰2.哈密顿图<
  |                       |示例:今有a,b,c,d,e,f,g 7人,已知下列事实: a会讲德语; b会讲法语和德语;
  |                       |     c会将俄语和英语; d会讲日语和汉语;e会讲德语和汉语;f会讲法语,日语
  |                       |     和俄语; g会讲英语和汉语;
  |                       |   试问:这7人应如何排座为(按圆桌排),才能使每个人和他身边的人交谈?
  |                       |           b   f  c
  |                       |         a         g
  |                       ╰           e    d
  |
  |           ╭1.定义:若图G的边仅在顶点处相交,则称图G为平面图,
  |           |2.平面图的面:平面图G将整个平面划分为几个区域,每一个区域称为图G的一个面;
  |           |3.内部面与外部面:每一个平面图都有一个面积无限的面(外部面),和若干个面积有限的面(内部面)
  |           |4.设图G为连通平面图,n个顶点,m条边,r个面之间的关系为: 欧拉公式:n-m+r=2
<   *2.平面图<
  |           |     a   e       n(顶点数)-m(边数)=r(面数(内面+外面(1)))
  |           |     |\ / \
  |           |     | c   d     顶点数:n=6  边数m=7  面数r: 6-7+r=2 => r=3;
  |           |     |/ \ /
  |           ╰     b   f       r=内面(Pacb,Pecfd)+外面(1)=3;
  |
  |      ╭1.树的基本概念
  |      |         a        *1.树的定义:连通(一点可达任意其他点),无回路 的无向图称为树;
  |      |      /     \
  |      |     b       c    *2.树是连通的,但删去任何一条边后就不连通(每条边都是割边)
  |      |   /   \     |       割边:本身连通的图只删去一条边该图就不再连通,这样的边就叫割边;
  |      |  d     e    f
  |      |      / | \       *3.树无回路,但增加任何一条边,就会得到一个回路;
  |      |     u  v  w
  |      |*4.树中度数为1的顶点称为叶结点或树叶,一棵树至少有2个树叶;
  |      |
  |      |*5.n个顶点的树有n-1条边;
  |      |
  |      |例:一棵树有2个3度结点,其余都是叶子结点,求叶子数
  |      |      /**
  |      |       * 假设树有n个顶点,则:
  |      |       * n个顶点的树,有n-1条边;
  |      |       * 无向图的度数的总和=边数的2倍; n个顶点的度数和=总边数*2
  |      |       */
  |      |      (2×3)+(n-2)×1=2(n-1);//总度数=总边数的2倍;
  |      |      6+n-2=2n-2 => n=6,所以树有6个顶点,则叶子结点的个数为6-2=4;
  |      |
  |      |2.连通图的生成树--将连通图转换为一棵树;
  |      |     A            A            A
  |      |   / / \        /   \        / / \
  |      |  B-/---C      B     C      B /   C
  |      |  \/    |      \     |       /    |
  |      |   D----E       D    E       D    E
  |      |
  |      |  现有7条边,树的边为顶点数(5)-1=4条边; 所以要删除3条边;//将连通图的边数删减到满足树的边数;
  ╰*2.树<
         |3.最小生成树
         |      A      *1.给图G的每一条边加上一个权值 图G的所有生成树中,
         |    / / \       权值之和最小的一棵称为G的最小生成树;              A     #1.添加所有顶点
         |  7/ / 3 \5                                                     \5  #2.添加权值为2的边(D,E)
         |  B-/-----C  *2.Kruskal算法求n阶有权连通图的最小生成树:      B------C  #3.添加权值为3的边(B,C)
         | 8\/ 8    |9    1>添加所有的顶点                         8/   3      #4.添加权值为5的边(A,C)
         |   D------E     2>添加权值最小的边                        D-------E  #5.添加权值为8的边(B,D)
         |      2         3>按权值从小到大的顺序添加边,如果添加后         2
         |                  出现回路则不添加;判断下一小的权值边;     最小生成树的权值=18
         |                4>添加n-1条边后即可得到图G的最小生成树
         |
         |4.给出无向有权图矩阵画出最优路线
         |  例:某城市拟在六个城区之间架设有线电视网,其网点的距离如下列无向有权图矩阵
         |     给出,试给出架设线路的最优方案,请画出图,并计算出最优方案下路线的长度;
         |       v1 v2 v3 v4 v5 v6                1    2    最小生成树:6个顶点需要5条边
         |    v1╭ 0  3  0  0  9  1 ╮           v1---v6---v3        v1
         |    v2│ 3  0  4  10 0  6 │生成连通图 3| 6╳9 |11        1/    \ 3
         |    v3│ 0  4  0  5  7  2 │========>  v2   v5         v6---v3  v2 (v2,v3为4但构成回路)
         | A= v4│ 0  10 5  0  8  0 │          4| 7╳10|8           2 /5
         |    v5│ 9  0  7  8  0  11│           v3---v4             v4---v5
         |    v6╰ 1  6  2  0  11 0 ╯              5                   8
         ╰                                   最小生成树的权值=1+2+3+5+8=18;最优线路长度为18;

  • 22
    点赞
  • 98
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
离散数学笔记 1. 集合 集合是离散数学的基础概念之一。一个集合是由一些元素组成的,这些元素可以是数、字母、符号、图形等等。 - 集合的表示方法 集合可以用大括号{}表示,元素之间用逗号隔开。例如,{1,2,3,4}表示一个由1、2、3、4四个元素组成的集合。 - 集合的基本运算 并集:表示集合A和集合B中所有元素的集合,用符号∪表示。例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。 交集:表示同时属于集合A和集合B的元素的集合,用符号∩表示。例如,A={1,2,3},B={3,4,5},则A∩B={3}。 差集:表示属于集合A但不属于集合B的元素的集合,用符号-表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 补集:表示集合A中不属于集合B的元素的集合,用符号A-B表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 2. 命题逻辑 命题逻辑是一种研究命题之间的逻辑关系和推理规律的数学分支。命题是指可以判断真假的陈述句。 - 命题的表示方法 命题可以用字母或符号表示。例如,P表示“今天是星期天”。 - 命题的逻辑运算 非运算:表示取反,用符号¬表示。例如,¬P表示“今天不是星期天”。 合取运算:表示“且”,用符号∧表示。例如,P∧Q表示“今天是星期天并且明天是星期一”。 析取运算:表示“或”,用符号∨表示。例如,P∨Q表示“今天是星期天或者明天是星期一”。 蕴含运算:表示“如果……那么”,用符号→表示。例如,P→Q表示“如果今天是星期天,那么明天是星期一”。 等价运算:表示两个命题具有相同的真值,用符号↔表示。例如,P↔Q表示“今天和明天都是星期天”。 3. 谓词逻辑 谓词逻辑是一种研究谓词之间的逻辑关系和推理规律的数学分支。谓词是指可以应用于一个或多个对象的属性或关系。 - 谓词的表示方法 谓词可以用字母或符号表示。例如,A(x)表示“x是一个人”。 - 谓词的逻辑运算 量词:表示谓词适用于某些对象或全部对象。有普遍量词∀和存在量词∃两种。例如,∀x A(x)表示“所有的x都是人”,∃x A(x)表示“存在一个x是人”。 连接词:表示谓词之间的逻辑关系。有合取词∧、析取词∨、蕴含词→、等价词↔等四种。例如,A(x)∧B(x)表示“x既是人又是男性”,A(x)∨B(x)表示“x是人或者x是男性”。 4. 图论 图论是一种研究图和图的性质的数学分支。图是由点和边组成的结构,点表示对象,边表示对象之间的关系。 - 图的基本概念 无向图:所有的边没有方向。 有向图:所有的边有方向。 简单图:没有自环和重边的图。 完全图:每个点都与其他点有边相连的图。 - 图的基本运算 路径:表示通过边相连的一系列点的序列。 回路:表示起点和终点相同的路径。 连通图:表示任意两个点之间都存在路径的图。 强连通图:表示任意两个点之间都存在有向路径的图。 生成树:表示包含所有点和最少边的树。 最短路径:表示两个点之间边权和最小的路径。 5. 组合数学 组合数学是一种研究离散结构之间的组合关系和计数方法的数学分支。 - 排列组合 排列:从n个不同元素中取出m个元素进行排列的方式数,用符号P(n,m)表示。 组合:从n个不同元素中取出m个元素进行组合的方式数,用符号C(n,m)表示。 - 二项式定理 二项式定理是组合数学中的一个重要公式,表示(a+b)^n的展开式中各项系数的规律。其公式为: (a+b)^n=C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + … + C(n,n)b^n 其中C(n,m)表示从n个不同元素中取出m个元素进行组合的方式数。 - 错排问题 错排问题是组合数学中的一个经典问题,表示n个元素的排列中,恰好有m个元素排列正确的方式数。其公式为: D(n,m)=(n-m)(D(n-1,m-1)+D(n-2,m-1)) 其中D(n,m)表示n个元素的排列中,恰好有m个元素排列正确的方式数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值