BZOJ 1263 [SCOI2006]整数划分 - 高精度乘法

考虑不是划分成整数,而是划分成任意实数
设我们将n划分成了x个正实数之和
易知当这x个数相等时答案是最优的
那么每个数都是 nx ,答案是 (nx)x
y=(nx)x
则有 lny=x[lnnlnx]
两侧求导可得 y=(n/x)x(lnnlnx1)
x=ne 时y’取0 此时乘积最大
因此每个数要尽量靠近e才能使答案最大
现在考虑整数 离e最近的整数是3 因此要把n尽量分成3 不足的用2补齐 这样可以保证是最优的。
referring to: PoPoQQQ

所以可以得到以下结论:

如果n是3的倍数 那么将n划分成n/3个3是最优的
如果n是3的倍数+1 那么将n划分成(n-4)/3个3和两个2是最优的
如果n是3的倍数+2 那么将n划分成(n-2)/3个3和1个2是最优的

还撸了一遍python,发现老是PE。。。根本不会写啊。。。

#include<bits/stdc++.h>
#define lca long long 
using namespace std;
int tot;

struct big{
   int xx[5050];
   int cnt;
   big(int x=0)
   {
      memset(xx,0,sizeof(xx));
      xx[1]=x;
      cnt=1;
   }
   int & operator [] (int x)
   {
      return xx[x];
   }
}ans(1);

big operator *= (big &a,big &b)
{
   big z;
   for(int i=1;i<=a.cnt;i++) 
    for(int j=1;j<=b.cnt;j++) 
     z[i+j-1]+=a[i]*b[j],z[i+j]+=z[i+j-1]/10,z[i+j-1]%=10;
   z.cnt=a.cnt+b.cnt;
   if(!z[z.cnt]) z.cnt--;
   a=z;
}

int main()
{
    int n;
    scanf("%d",&n);
    while(n>4)
    {
       big temp(3);
       n-=3;
       ans*=temp;
    }
    if(n==4) 
    {
     big temp(4);
     ans*=temp;
    }
    else if(n==3) 
    {
     big temp(3);
     ans*=temp;
    }
    else if(n==2)
    {
     big temp(2);
     ans*=temp;
    }
    printf("%d\n",ans.cnt);
    for(int i=ans.cnt;i;i--)
    {
       printf("%d",ans[i]);
       tot++;
       if(tot==100)
        break;
    }
} 

PE 的py:

n=int(input())
sum=1
op=n%3
tim=(int)(n/3)
if op==0:
    while tim>0:
        tim-=1
        sum*=3
if op==1:
    tim-=1
    while tim>0:
        tim-=1
        sum*=3
    sum*=4
if op==2:
    while tim>0:
        tim-=1
        sum*=2
    sum*=2

temp=sum
num=0
basic=1
while temp>0:
    num+=1
    temp=temp//10
print('%d '%num)
if num<=100:
    print(sum)
else:
    temp=sum
    cnt=0
    basic=1
    while cnt!=num-100:
        cnt+=1
        temp=(temp//10)
    print('%d'%temp)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值