离散
离散数学基础 第三版 华中科技大学出版社
第一课
朴素集合论
集合定义(用来证明)等
----在定义以后可以明确确定元素是否属于集合---p1
---集合的元素 1 无序性 2 唯一性(多重集合除外 可以多次记录同一元素)3 确定 ---p1 p2
---集合也可以是元素---p2
---各种不同常用集合(N Z I P Q R C N(m) Z(m))---p2
---朴素集合论缺陷 罗素悖论---p3
---集合的基数:集合不同元素的数目 #A 或者 |A|---p3
---集合的关系 子集 包含 相等(元素是否属于两个集合 等等)---p3
---空集是A的子集(反证法:只适用于 二值逻辑 问题 就只有两种可能)----A是A的子集----A是B的子集 B是C的子集 知道 A是C的子集(传递性)---p4
---A = B 空集是唯一的(反证法)----p4
---幂集定义---p4
---幂集基数与元素数的关系( #(PA) = 2^(#A) )证明(二项式定理)---p5
---幂集合子集下标二进制表示与元素存在的关系---p5 p6
概率
概率论与数理统计 第四版 高等教育出版社
第一课
概率论
---随机试验的三个特点---p2
---样本空间 样本点---p2
---随机事件 基本事件 复合事件 必然事件 不可能事件---p3
---事件之间的关系---p3