【数据结构1.0】计数排序

读者老爷好,本鼠鼠最近学了计数排序,浅浅介绍一下!

目录

1.统计相同元素出现次数

2.根据统计的结果将序列回填到原来的序列中

3.相对映射计数排序


计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用,是非比较排序的一种!

这个排序算法不难理解,万物皆可举例,我们举例讲解啊!

 很久很久以前,有一只可爱的肥龙猫,叫做dongdong~。有一天dongdong~的男朋友给dongdong~出了一个题目:有一组数组a如下,要dongdong~用排序算法排成升序。

聪明的dongdong~使用了计数排序解决了这个问题,还将解决办法告诉了本鼠,方法如下:

1.统计相同元素出现次数

dongdong~遍历数组a后知道最大的元素是9。所以dongdong~开了一个大小为10*sizeof(int)的数组tmp,并将数组tmp元素全部初始化为0,如下图。用来统计相同元素出现的次数:

dongdong~再次遍历数组a:遇到第一个元素是5,那么dongdong~就将tmp[5]++,tmp[5]就等于1了;遇到第二个元素是3,dongdong~就将tmp[3]++,tmp[3]就等于1了;遇到第三个元素是5,dongdong~就将tmp[5]++,tmp[5]就等于2了;…………

dongdong~说其实采用了绝对映射的办法,将a的各个元素绝对映射到tmp的元素下标当中,a的相同元素出现的次数就体现在tmp相对应下标元素的值。例如a元素5就出现了3次(a[5]==3)。

2.根据统计的结果将序列回填到原来的序列中

dongdong~遍历tmp就知道了a相同元素出现的次数:a元素0出现了0次、1出现了0次……3出现了1次、4出现了0次…………

dongdong~在遍历tmp的同时将a回填好就行了!

dongdong~还用代码验证了可行性,本鼠偷偷将代码附上:

//绝对映射计数排序
void CountingSort(int* a, int n)
{
	int max = a[0];
	//遍历找a元素最大值
	for (int i = 1; i < n; i++)
	{
		if (a[i] > max)
		{
			max = a[i];
		}
	}
	//动态申请a元素最大值+1个sizeof(int)数组并初始化
	int* tmp = (int*)calloc(max + 1, sizeof(int));
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	//统计a相同元素出现次数
	for (int i = 0; i < n; i++)
	{
		tmp[a[i]]++;
	}
	//根据统计结果回填a
	int j = 0;
	for (int i = 0; i < max + 1; i++)
	{
		while (tmp[i]--)
		{
			a[j++] = i ;
		}
	}
}

dongdong~的测试代码本鼠也偷偷拿来了:

int main()
{
	int a[] = { 5,3,5,8,5,9 };
	CountingSort(a, sizeof(a) / sizeof(int));
	for (int i = 0; i < sizeof(a) / sizeof(int); i++)
	{
		printf("%d ", a[i]);
	}
	return 0;
}

3.相对映射计数排序

 dongdong~是一只精益求精的肥龙猫,它想如果需排序数组a元素都在1000左右的话,如图:

用绝对映射计数排序的话,动态申请的用来统计a相同元素出现次数的tmp要开1000*sizeof(int)个字节的空间,而且大部分空间都没有用到,如图红色部分都浪费了!



a元素999映射tmp[999]的下标999、990映射tmp[990]的下标990…… 

 dongdong~就想了一个办法,采用相对映射实现计数排序。dongdong~遍历数组a找到最大元素999和最小元素990,得出a的元素数据范围,动态申请数组tmp就开a的元素数据范围+1个sizeof(int)大小的空间就好了!



a元素999映射tmp[9]的下标9、990映射tmp[0]的下标0……


其实相对映射就是将a元素映射tmp对应元素下标都减去了a的最小元素值(这里是990)!

dongdong~说那么回填a的时候,对应元素下标记得都加上a的最小值再回填到a就好了!

//相对映射计数排序
void CountingSort(int* a, int n)
{
	//遍历a找出最大元素和最小元素
	int max = a[0], min = a[0];
	for (int i = 1; i < n; i++)
	{
		if (a[i] > max)
		{
			max = a[i];
		}
		if (a[i] < min)
		{
			min = a[i];
		}
	}
	//动态申请a元素数据范围+1个sizeof(int)字节数组并初始化
	int* tmp = (int*)calloc(max - min + 1, sizeof(int));
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	//统计a相同元素出现次数
	for (int i = 0; i < n; i++)
	{
		tmp[a[i] - min]++;
	}
	//根据统计结果回填a
	int j = 0;
	for (int i = 0; i < max - min + 1; i++)
	{
		while (tmp[i]--)
		{
			a[j++] = i + min;
		}
	}
}

dongdong~说采用相对映射对于a中有负数也一样适用,如果采用绝对映射的话就不行捏(绝对映射到的下标不可能是负数):

int main()
{
	int a1[] = { 5,3,5,-8,5,-9 };
	int a2[] = { 999,998,997,996,999,990 };
	CountingSort(a1, sizeof(a1) / sizeof(int));
	CountingSort(a2, sizeof(a2) / sizeof(int));
	for (int i = 0; i < sizeof(a1) / sizeof(int); i++)
	{
		printf("%d ", a1[i]);
	}
	printf("\n");
	for (int i = 0; i < sizeof(a2) / sizeof(int); i++)
	{
		printf("%d ", a2[i]);
	}
	return 0;
}

 

dongdong~说实际上相对映射计数排序才是真正的计数排序! 

4.计数排序特性

 1.计数排序不适合分散的数据,在数据范围集中时,效率极高。但是适用范围及场景有限:不适合浮点数、字符串、结构体等数据的排序,只适合整数!

2.时间复杂度:O(MAX(N,范围))。范围是指a的元素数据范围,下同。

3.空间复杂度:O(范围)。

 dongdong~谢谢您的阅读嘞!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

X_once

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值