两个数最大公约数,证明与实现

在使用欧几里德算法计算两个数的最大公约数时,有两种实现形式,一种是迭代相除,另一种是递归。它们都依赖于一个定理:gcd(a,b) = gcd(b,a mod b)。

下面对这个定理做证明:

1、当a<b时,a mod b = a,gcd(a,b) = gcd(b,a mod b) = gcd(b,a),定理成立。

2、当a>b时,设a = kb+r,r = a mod b。

若 d是a,b的公约数,则a mod d = 0, b mod d = 0, 因为r = a-kb,所以r mod d = (a-kb) mod d=0,因此d也是r的约数,由此可得,若d是a,b的公约数,则d是b, a mod b的公约数。

若d是b, a mod b的公约数,a = kb+r = kb+(a mod b),a mod d = [kb+(a mod b)] mod d = 0,所以d也是a的约数。

由以上可得(a,b)和(b,a mod b)拥有相同的公约数,因此拥有相同的最大公约数。

算法实现:

#include <stdio.h>
#include <stdlib.h>

//求两个数的最大公约数
int gcd(int a,int b){ 
	int temp;
	while(b!=0){
		temp = a;
		a = b;
		b = temp%b;
	}
	return a;
}

//求两个数的最大公约数,递归实现形式
int gcd_recursive(int a,int b){
	if(b==0){
		return a;
	}
	return gcd_recursive(b,a%b);
}

int main(){
	int a,b;
	while(scanf("%d %d",&a,&b)!=EOF){
		printf("%d\n",gcd(a,b));
		printf("%d\n",gcd_recursive(a,b));
	}
	return EXIT_SUCCESS;
}

如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

0是任何非零整数的倍数。




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值