LeetCode有道题要求实现pow(x,n)即x的n次方,原题地址为:https://leetcode.com/problems/powx-n/
提交Math.pow(x,n)
也能通过 但是很明显没啥意义。
个人想了一个动态规划的实现方式,先将n转换为2进制,然后将x的各个2的指数次幂提前求好,当然2的指数不能(不需要)超过n,然后根据n的2进制,将2进制位上为1的幂进行累成,以3的9次方为例说明:
9的2进制为:1001 //长度为4
设置pows数组 int[] pows = new int[4] //2进制长度为4,所以大小为4
pows取值为pow[0]=x^(2^0)=x; pow[1]=x^(2^1); pow[i]=x^(2^i);
根据9的二进制1001,第3位和第0位结果为1,因此最后结果为pow[3]*pow[0],即x^(2^3) * x^(2^0) = x^9.
这样做还是比较快的,代码如下:
import java.util.ArrayList;
public class Solution {
//将一个数转换为2进制,因为测试数据中有-2147483648,超出int型的范围
//所以使用double,这样在除以2的时候就需要转换为int型
public ArrayList<Integer> n2binary(double n){
ArrayList<Integer> binary = new ArrayList<Integer>();
while(n>0){
if(n%2==1){
binary.add(1);
}else{
binary.add(0);
}
n = (int)(n/2); //n为double,强制转换
}
return binary;
}
public double myPow(double x, int n) {
boolean neg = false;
double nr; //n_replace,nr为n的替代值,防止n为负值
if(n<0){
neg = true;
nr = -((double)n);//-2147483648取负值后仍为-2147483648,奇怪,需要先强制转换为double
}else if(n>0){
nr = n;
}else{
return 1;
}
if(x==1){
return 1;
}else if(x==-1){
if(nr%2==0){
return 1;
}else{
return -1;
}
}
double res = 1;
ArrayList<Integer> n2s = n2binary(nr);
//构建大小为k的幂数组,pows[i]的值表示x^(2^i)次方
double[] pows = new double[n2s.size()];
pows[0] = x;
for(int i=1;i<n2s.size();i++){
pows[i] = pows[i-1]*pows[i-1];
}
for(int i=n2s.size()-1;i>=0;i--){
if(n2s.get(i)==1)
res *= pows[i];
}
if(neg){ //指数为负数的处理操作
return 1/res;
}
return res;
}
public static void main(String[] args) {
Solution s = new Solution();
System.out.println(s.myPow(-1, -2147483648));
}
}