题目描述
输入一颗二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径。路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径。
这道题思路不难,采用先序递归遍历的方式,先访问根节点,然后再访问子节点,在访问到叶节点时,检查当前累加和的大小,如果等于目标值,则将当前路径保存到结果中。
这里发这篇博客的目的算是对上述过程的一个优化,我们用一个ArrayList<Integer>
来保存当前路径的值,在保存一个结果时,因为ArrayList<Integer>
为引用类型,因此我们使用res.add(new ArrayList<Integer>(curPath))
的方式重新构造一个list加入到结果中,这样以后对list的修改就不会影响到已经加入的值。
同时,我们在将ArrayList<Integer>
传递到子节点时,也可以是使用new ArrayList<curPath>
的方式,但这个样子会引起不必要的复制,以及额外的空间消耗,因为curPath是不需要保存的(在最终加入到res的时候会重新复制),所以我们可以直接将curPath
传入到叶子节点中,不过这个时候,在递归的最末尾(return语句前),如果此次曾将结果加入到curPath,要进行删除操作。
代码如下:
public ArrayList<ArrayList<Integer>> FindPath(TreeNode root,int target) {
ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>();
if(root==null){
return res;
}
preOrder(res,new ArrayList<Integer>(),root,0,target);
return res;
}
//先序递归遍历
public void preOrder(ArrayList<ArrayList<Integer>> res,ArrayList<Integer> cur,TreeNode node,int sum,int target){
if(node.left==null && node.right==null){
if(sum+node.val==target){
cur.add(node.val);
res.add(new ArrayList<Integer>(cur));
cur.remove(cur.size()-1); //记住移除最后一个元素
}
return;
}
sum += node.val;
cur.add(node.val);
if(node.left!=null){
preOrder(res,cur,node.left,sum,target); //出入cur就可以,不用重新复制
}
if(node.right!=null){
preOrder(res,cur,node.right,sum,target); //出入cur就可以,不用重新复制
}
cur.remove(cur.size()-1); //记住移除最后一个元素
}