快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。
该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤。因此我的对快速排序作了进一步的说明:挖坑填数+分治法:
先来看实例吧,定义下面再给出(最好能用自己的话来总结定义,这样对实现代码会有
对挖坑填数进行总结
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
方法1:
public class Quickdemo {
/**
* @快排
* 注意:从开头出发,以第一个数为基准
* 挖坑法
*/
public static void main(String[] args) {
int[] a={72,6,57,88,60,42,83,73,48,68};
int[] b = quick(a,0,9);
for(int i=0; i<10; i++){
System.out.print(b[i]+" ");
}
}
public static int[] quick(int[] a, int l, int h){
if(l < h){
int i=l, j=h,x=a[l];
while(i<j){
while(i<j && x<=a[j]){
j--;
}
if(i<j){
a[i] = a[j];
i++;
}
while(i<j && x>a[i]){
i++;
}
if(i<j){
a[j] = a[i];
j--;
}
a[i] = x;
quick(a,l,i-1);
quick(a,i+1,h);
}
}
return a;
}
}
方法2
public class Quickdemo2 {
/**
* @快排 交换法
* 注意:从开头出发,以第一个数为基准
*
*/
public static void main(String[] args) {
int[] a = {5,45,33,47,98,67,22,11,43};
quickSort(a,0,a.length-1);
for(int i=0; i<a.length; i++){
System.out.print(a[i]+" ");
}
}
public static void swamp(int[] a, int i, int j){
if(i == j) return;
else{
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
public static int quickFirst(int []a, int l, int h){
int m = l, x = a[l];
for(int i=l+1; i<=h; i++){
if(a[i]<x){
l++;
swamp(a, i, l);
}
}
swamp(a, l, m);
return l;
}
public static void quickSort(int[]a, int l, int h){
if(l <h){
int m = quickFirst(a, l ,h);
quickSort(a, l, m-1);
quickSort(a, m+1, h);
}
}
}