推荐算法
Xafter0
这个作者很懒,什么都没留下…
展开
-
推荐算法评估方式
RMSE与MAE计算方式如下$$RMSE=\frac{\sqrt{\sum_{(u,i)\in T}(r_ui-\hat{r_ui})^2}}{|T|}$$原创 2018-06-04 21:01:09 · 1671 阅读 · 0 评论 -
推荐算法SVD
SVD在LFM的基础上了用户偏置、和商品偏置项,有的用户可能要求比较苛刻,他所有的评分都偏低,而有的商品可能质量比较好,所有用户对它的评分都偏高,其预测公式如下$$r_{ui}=\mu + b_u+b_i+p_u^Tq_i$$其中\(\mu\)表示所用评分的均值,b_u表示用户与物品无关的偏置项,b_i表示物品与用户无关的偏置项。求解上式依然用均方误差最小的梯度下降方法,为防止过拟合,常加入正则项...原创 2018-06-04 22:16:39 · 353 阅读 · 0 评论 -
推荐算法冷启动
冷启动主要分为三类用户冷启动 :为新用户推荐物品物品冷启动 :如何把新物品推荐给用户系统冷启动 :在新网站上设计个性化推荐系统解决方式主要有:提供非个性化的推荐 非个性化推荐的最简单例子就是热门排行榜,我们可以给用户推荐热门排行榜,然后等到用户数据收集到一定的时候,再切换为个性化推荐。利用用户注册时提供的年龄、性别等数据做粗粒度的个性化。利用用户的社交网络账号登录(需要用户授权),导入用户在社交网...原创 2018-06-07 10:17:01 · 1791 阅读 · 1 评论 -
推荐算法随机游走
二分图中节点集$$V=\{v_1,\cdots,v_N\}$$其中\(N为节点个数\)从某个节点\(u\)出发进行随机游走,以\(\alpha\)的概率选择继续从当前节点任选一个与之相连的其他节点进行下一次的随机游走或者从\(u\)重新开始游走,那么节点\(v_i\)被访问到的概率$$p(v_i)=(1-\alpha)(v_i==u)+ \alpha \sum_{v_j\in in(v_i...原创 2018-05-31 20:59:47 · 5909 阅读 · 2 评论 -
推荐算法LFM
将每个用户和物品都用一个\(K\)维向量表示,则某个用户\(u\)对某个物品\(i\)的感兴趣程度可以表示为$$r_{ui}=p_u^Tq_i$$其中\(p_u\)表示用户\(u\)与\(K\)个隐含类的关联关系,\(q_i\)表示物品\(i\)与\(K\)个隐含类的关联关系。训练的目标函数为$$min\sum_{(u,i)\in S}(r_{ui}-\hat{r_{ui}})=r_{ui}-p_...原创 2018-05-31 21:51:48 · 3032 阅读 · 0 评论 -
矩阵分解小结
1.LFM每个用户和每个物品都用一个k维向量表示,意义为用户u与k个隐藏主题的相关程度以及物品i与k个隐藏主题的相关程度用户u对物品i的评分,用户u对物品i的预测评分如下$$\hat r_{ui}=p_u^Tq_i$$目标函数为$$\sum_{(u,i)\in S}(\hat r_{ui}-p_u^Tq_i)^2 + \lambda \sum_u ||p_u||^2 + \gamm...原创 2018-08-15 11:46:17 · 324 阅读 · 0 评论 -
FM与FFM
1.FM逻辑回归、线性回归等均没有考虑特征交叉,可以考虑$$y(x)=w_0+\sum_{i=1}^{n}w_ix_i + \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}w_{ij}x_ix_j$$但此处\(w_{ij}\)为稠密矩阵,学习的计算复杂度高而且在特征高度稀疏的时候w得不到有效的学习,因此将w分解为向量的乘积,具体的$$w_{ij}=v_i^Tv_j$...原创 2018-08-15 16:32:06 · 551 阅读 · 0 评论