分布式锁在AI大模型调用中的应用

1. 技术背景

AI大模型的调用往往是一个高资源消耗的操作,在实际应用中,为了防止恶意用户使用辅助工具频繁地调用这些大模型,占用大量服务器资源,影响其他用户的请求处理,降低系统的整体性能和服务质量,使用分布式锁就可以来实现这一限制策略。

【实现思路】

  1. 请求拦截:在请求到达之前,拦截并尝试获取分布式锁。

  2. 获取锁:如果成功获取锁,继续执行AI模型调用。

  3. 失败处理:如果获取锁失败,返回HTTP 429(Too Many Requests)状态码,提示用户请求频率过高。

  4. 释放锁:调用结束后,释放锁,以便其他请求能够获取锁。

2. 分布式锁代码实现示例

此处分布式锁的实现选用的是 Redisson 框架,why ?: Redis 分布式锁存在什么问题 ?如何解决 ?_redis做分布式锁的问题-CSDN博客

2.1 添加 Redisson 框架支持

<!-- Redisson -->
<!-- https://mvnrepository.com/artifact/org.redisson/redisson-spring-boot-starter -->
<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson-spring-boot-starter</artifactId>
    <version>3.25.2</version> <!-- 请根据实际情况使用最新版本 -->
</dependency>

2.2 配置 RedissonClient 对象

/**
 * Redisson 配置
 *
 * @author helong
 */
@Configuration
public class RedissonConfig {
    @Value("${spring.data.redis.host}")
    private String host;
    @Value("${spring.data.redis.port}")
    private Integer port;

    /**
     * 将 RedissonClient 注入容器
     *
     * @return {@link RedissonClient }
     */
    @Bean
    public RedissonClient redissonClient() {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://" + host + ":" + port);
        return Redisson.create(config);
    }
}

2.3 自定义调用 AI 大模型请求分布式锁拦截器

/**
 * 自定义 AI 大模型调用分布式锁的拦截器
 *
 * @author helong
 */
@Component
public class AIModelLockInterceptor implements HandlerInterceptor {
    /**
     * 注入 RedissonClient
     */
    @Resource
    private RedissonClient redissonClient;
    
    private static final String REQUEST_KEY = "MODEL_LOCK";
    private static final String MODEL = "MODEL";
    private static final String TYPE = "TYPE";

    /**
     * 调用目标方法前执行
     * @param request
     * @param response
     * @param handler
     * @return boolean
     * @throws Exception
     */
    @Override
    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
        SecurityUserDetails userDetails = SecurityUtil.getCurrentUser();
        Long uid = ObjectUtil.isNotNull(userDetails) ? userDetails.getUid() : NumberUtils.LONG_ZERO;
        // 获取请求中调用的AI模型和类型
        HashMap<String, Integer> modelAndTypeMap = getModelAndTypeByRequestURI(request.getRequestURI());
        if (modelAndTypeMap.isEmpty()) {
            return true;
        }
        // 获取当前用户分布式锁的 key
        String lockKey = RedisUtil.getModelLockKey(uid, modelAndTypeMap.get(MODEL), modelAndTypeMap.get(TYPE));
        RLock rLock = redissonClient.getLock(lockKey);
        boolean isLock = rLock.tryLock(5, TimeUnit.SECONDS);
        if (!isLock) {
            // 客户端请求过于频繁,获取锁失败
            response.setContentType("application/json;charset=UTF-8");
            response.setCharacterEncoding("UTF-8");
            String json = "{\"code\": 429, \"msg\": \"请勿频繁请求,请稍后再试!\", \"data\": null}";
            response.getWriter().write(json);
            return false;
        }
        request.setAttribute(REQUEST_KEY, rLock);
        return true;
    }

    /**
     * 调用目标方法后执行(释放锁)
     * @param request
     * @param response
     * @param handler
     * @param ex
     */
    @Override
    public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) {
        RLock rLock = (RLock) request.getAttribute(REQUEST_KEY);
        if (rLock != null && rLock.isHeldByCurrentThread()) {
            rLock.unlock();
        }
    }


    /**
     * 用于匹配请求路径
     */
    private final Map<String, AiModelEnum> modelMap = new HashMap<>() {
        @Serial
        private static final long serialVersionUID = -1000996186146839620L;

        {
            put("/openai", AiModelEnum.CHAT_GPT);
            put("/tongyi", AiModelEnum.TONG_YI_QIAN_WEN);
            put("/xunfei", AiModelEnum.XUN_FEI_XIN_HUO);
            put("/wenxin", AiModelEnum.WEN_XIN_YI_YAN);
            put("/doubao", AiModelEnum.DOU_BAO);
        }
    };
    /**
     * 获取请求中调用的AI模型和类型
     *
     * @param requestURI
     * @return {@link HashMap }<{@link String }, {@link Integer }>
     */
    private HashMap<String, Integer> getModelAndTypeByRequestURI(String requestURI) {
        HashMap<String, Integer> modelAndTypeMap = new HashMap<>();

        // 遍历 modelMap 以匹配请求路径
        for (Map.Entry<String, AiModelEnum> entry : modelMap.entrySet()) {
            String key = entry.getKey();
            AiModelEnum modelEnum = entry.getValue();

            if (requestURI.startsWith(key + "/chat")) {
                modelAndTypeMap.put(MODEL, modelEnum.getCode());
                modelAndTypeMap.put(TYPE, AiTypeEnum.CHAT.getCode());
                return modelAndTypeMap;
            } else if (requestURI.startsWith(key + "/draw")) {
                modelAndTypeMap.put(MODEL, modelEnum.getCode());
                modelAndTypeMap.put(TYPE, AiTypeEnum.DRAW.getCode());
                return modelAndTypeMap;
            }
        }

        return modelAndTypeMap;
    }
}
/**
 * 调用 AI 大模型获取分布式锁的 key
 *
 * @param uid
 * @param model
 * @param type
 * @return {@link String }
 */
public static String getModelLockKey(Long uid, Integer model, Integer type) {
    return "MODEL_LOCK_KEY_" + uid + "_" + model + "_" + type;
}

2.4 配置请求拦截规则 

/**
 * 配置自定义拦截器拦截规则
 *
 * @author helong
 */
@Configuration
public class WebConfig implements WebMvcConfigurer {
    /**
     * 注入调用AI模分布式型锁拦截器
     */
    @Resource
    private AIModelLockInterceptor aiModelLockInterceptor;

    @Override
    public void addInterceptors(InterceptorRegistry registry) {

        // 拦截调用 AI 大模型分布式锁的拦截规则
        registry.addInterceptor(aiModelLockInterceptor)
                // 拦截调用 AI 大模型的请求
                .addPathPatterns("/openai/chat", "/openai/draw",
                        "/tongyi/chat", "/tongyi/draw",
                        "/xunfei/chat", "/xunfei/draw",
                        "/wenxin/chat", "/wenxin/draw",
                        "/doubao/chat", "/doubao/draw");
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Master_hl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值