MIT 线性代数

vedio 9

Suppose A m by n while m < n, then there are nonzero solutions to AX = 0.
Reason: There will be free variables. (rank < n)
When v1,,vn are columns of A, they are independent if nullspace of A is only {zero vector}. (rank = n)
They are dependent if AC = 0 for some nonzero C.
Vectors v1,...,vl span a space means: The space consists all combinations of those vectors.
Basis for a space is a sequence of vectors v1,...,vd with 2 properties
1 They are independent
2 They span the space
Every basis for the space has the same number of vectors.

rank(A) = number of pivot columns = dimention of C(A)
dim N(A) = number of free variables = n - r

vedio 10

4 foundermental sub-spaces:
columnspace: C(A) in Rm , to be exactly, it is r, and r < m
nullspace: N(A) in Rn , it is (n - r)
rowspace = all colums of row = all columns of AT : C(AT) in Rn
nullspace of AT : N(AT) in Rm = left null space of A

left null space 名字由来:
ATy=0(ATy)T=0yTA=0

Ex:
A = [1, 1, 1, 1]
dim rowspace of A = 1
dim N(A) = n - r = 3
dim C(A) = 1
dim N( AT ) = 0

C(A)N(A)
pivot columnsspecial columns
rn - r

行变换以后 same row space, different column space

vedio 11

矩阵空间 R3X3 是9维,basis有9个,分别如下:
100000000
000100000
000000100
……
000000001

S是三维对称矩阵,U是上三角矩阵(似乎基的数量等于维数)
dim S = 6, dim U = 6
dim(S U) = 3
dim(S + U) = 9 (S + U can span R3 )

Graph = {nodes, edges}

vedio 14

numbernamedim
1row spacer
2null spacen - r
3column spacer
4null space of AT m - r

1 is orthogonal to 2, 3 is orthogonal to 4

if x is orthogonal to y, xTy=0 , then xTx+yTy=(x+y)T(x+y)
Proof:
xTx+yTy=xTx+xTy+yTx+yTy
0=xTy+yTx=2xTy
0=xTy

Subspace S is orthogonal to Subspace T means: every vector in S is orthogonal to every vector in T.

Nullspace(n - r) and rowspace(r) are orthogonal Complements(补) in Rn.

Nullspace contains all vectors rowspace.

Ax = b(m > n), when there is no solution: ATAx^=ATb

N(ATA)=N(A)
rank of ATA=rank of A
ATA is invertible exactly if A has independent columns.

vedio 15

有关投影,b在a上的投影为p,p = ax,e = b - p,
a 和e正交,因此 aTe=0
aT(bp)=0
aT(bax)=0
aTax=aTb
x=aTbaTa
p=ax=aaTbaTa=aaTaTab

project matric(投影矩阵为) P=aaTaTa

PT=P 从上式就可以看出来
P2=P 投影两次和一次的结果是一样的

为什么要投影,why project?
Because Ax = b may have no solution, then solve Ax^=P instead

二维情况下:
P=Ax^ find x^
key: e=bAx^ is perpendicular to plane

aT1(bAx^)=0
aT2(bAx^)=0

[aT1aT2](bAx^)=[00]
AT(bAx^)=0
ATAx^=ATb
x^=ATbATA
p=Ax^=A(ATA)1ATb
投影矩阵 P=A(ATA)1AT
PT=P, P2=P

vedio 16

P=A(ATA)1AT
If b in column space Pb=b
If b column space Pb=0

数学上的解释:
Column space 与 Nullspace of AT 正交,

如果b in column space, b=Ax,
Pb=A(ATA)1ATb=A(ATA)1ATAx=Ax=b

如果b in Null space of AT,ATb=0Pb=0

对于任意向量b,在C(A)上的投影为p,在N(A)上的投影为e, p + e = b
其中 p=Pb,e=(IP)b
也很好理解, e=bp=bPb=(IP)b

线性规划的本质就是 Minimize ||Axb||2=e2
当我们没办法求出Ax = b时,只能求 Ax^=p , p是b在C(A)上的投影
Ax^=p=Pb=A(ATA)1ATb
ATAx^=ATb

e=bp=bAx^

If A has independent Columns space, then ATA is invertible.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值