LeetCode 122. 买卖股票的最佳时机 II(C++)

本文介绍了两种不同的方法来解决股票交易的最大利润问题。解法一是使用动态规划,通过比较前一天的利润与昨天买今天卖的利润来更新总利润。解法二是利用历史最低价作为买入点,通过判断后续价格走势来决定卖出时机,同样采用贪心策略。两种方法都在力扣平台上通过了所有测试用例,展现出高效的时间复杂度和内存使用。
摘要由CSDN通过智能技术生成

题目地址:力扣

解法1:动态规划(贪心?)

思路:某一天的利润等于max(前一天的利润,前一天的利润加上昨天买今天卖的利润)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        // 初始化总利润
        int profit = 0;
        
        // 从第二天开始循环
        for(int i = 1; i < prices.size(); ++i)
            profit = max(profit, profit + prices[i] - prices[i-1]);
        return profit;
    }
};

解法2:通过当前元素的历史最小值来计算收益

思路:通过历史最小值来判断哪一天买入,然后通过当前节点往后看是否跌了来判断是否卖出,感觉也类似于贪心。但是买股票用贪心的方法本来就是收益最大化的手段啊

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        // 设定一个变量用来存储当前元素之前的最低值,另一个用于存储中总收益
        int min_price = prices[0];
        int profit = 0;
        
        // 遍历整个数组
        for(int i = 0; i < prices.size(); ++i)
        {
            // 只要当前价格比最低值高
            if (prices[i] > min_price)
            {
                // 看看当前是否已经遍历到末尾了,若已经末尾了就必须卖出
                if (i+1 >= prices.size())
                    profit += (prices[i] - min_price);
                // 若没到末尾,就再往后看一天,若后一天跌了,则今天卖出最好,并且把最小值重置为后        一天的价格
                else if (prices[i+1] < prices[i])
                {
                    profit += (prices[i] - min_price);
                    min_price = prices[i+1];
                }
            // 若当前价格比最低值低,就把最低值设为当前价格
            } else
                min_price = prices[i];
        }
        return profit;
    }
};

Accepted

  • 200/200 cases passed (4 ms)
  • Your runtime beats 90.85 % of cpp submissions
  • Your memory usage beats 50.18 % of cpp submissions (12.7 MB)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值