《小灰的算法之旅》学习笔记
题目
判断一个正整数是否为2的整数次幂,如果是,则返回true,否则,返回false
方法一:穷举法
步骤
- 创建一个中间变量temp,初始值为1,然后进入一个循环,每次循环都让temp乘以2,并和该整数相比较
- 如果不相等,则让temp*2;如果temp>目标整数,则说明目标整数不是2的整数次幂;如果相等,则说明目标整数是2的整数次幂
分析
如果目标整数的大小为n,则此方法的时间复杂度为O(logn)
public boolean exhaustively(int num){
int temp=1;
while (temp<=num){
if (temp==num)
return true;
temp=temp*2;
}
return false;
}
方法二:移位法
把方法一中,乘以2 的操作,换成移位运算
分析
移位的性能比乘法高,但这种方法,本质上并没有变,算法的时间复杂度依然是O(logn)
此处写出这种方法,是为了提醒自己,乘以2的操作,可以用移位运算来代替
public boolean exhaustively(int num){
int temp=1;
while (temp<=num){
if (temp==num)
return true;
temp = temp<<1;
}
return false;
}
方法三:位运算
- 当把2的整数次幂转换为二进制时,可以发现,如果一个数是2的整数次幂,那么当它转换为二进制时,它的最高位为1,其余位为0
- 根据这个特点,可以知道,2的整数次幂和它本身减1的结果,进行位运算,的结果一定是0,反之,如果一个数不是2的整数次幂,那么结果一定不是0
分析
这种方法,只需要计算 num & (num-1)的结果是否为0,时间复杂度为0(1)
public boolean bitOperation(int num){
return (num & num-1) ==0;
}