判断一个数是否为2的整数次幂

这篇博客介绍了三种方法判断一个正整数是否为2的整数次幂:穷举法、移位法和位运算法。通过循环和位操作,分析了每种方法的时间复杂度,重点讨论了位运算的高效性,其时间复杂度为O(1)。文章旨在提升对位运算理解并优化算法效率。
摘要由CSDN通过智能技术生成

《小灰的算法之旅》学习笔记
题目
判断一个正整数是否为2的整数次幂,如果是,则返回true,否则,返回false

方法一:穷举法

步骤

  1. 创建一个中间变量temp,初始值为1,然后进入一个循环,每次循环都让temp乘以2,并和该整数相比较
  2. 如果不相等,则让temp*2;如果temp>目标整数,则说明目标整数不是2的整数次幂;如果相等,则说明目标整数是2的整数次幂

分析
如果目标整数的大小为n,则此方法的时间复杂度为O(logn)

public boolean exhaustively(int num){
        int temp=1;
       while (temp<=num){
           if (temp==num)
               return true;
           temp=temp*2;
       }
        return false;
    }

方法二:移位法
把方法一中,乘以2 的操作,换成移位运算

分析
移位的性能比乘法高,但这种方法,本质上并没有变,算法的时间复杂度依然是O(logn)
此处写出这种方法,是为了提醒自己,乘以2的操作,可以用移位运算来代替

public boolean exhaustively(int num){
        int temp=1;
       while (temp<=num){
           if (temp==num)
               return true;
          temp = temp<<1;
       }
        return false;
    }

方法三:位运算

  1. 当把2的整数次幂转换为二进制时,可以发现,如果一个数是2的整数次幂,那么当它转换为二进制时,它的最高位为1,其余位为0
  2. 根据这个特点,可以知道,2的整数次幂和它本身减1的结果,进行位运算,的结果一定是0,反之,如果一个数不是2的整数次幂,那么结果一定不是0

分析
这种方法,只需要计算 num & (num-1)的结果是否为0,时间复杂度为0(1)

public boolean bitOperation(int num){
        return (num & num-1) ==0;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值