poj 3057 Evacuation 二分图最大匹配 最短路

题目

题目链接:http://poj.org/problem?id=3057

题目来源:《挑战》例题。

简要题意:给定矩阵,有门,有空地,空地上面有人,门每秒能过一个,人每秒移动一格,问最少多少秒所有人能够从门离开。

题解

可以先bfs求出每个人到每个门的最短路长度,要注意不能从门走到门,就是遇到D不要加入队列。

然后将门的每个时间点作为点去连边,到达门后就都可以了。

门的每个时间点和人作为二分图两边然后去做最大匹配。

可以二分时间然后去判断,也可以根据时间去建图做最大匹配,看能不能匹配全部的人。

也可以建图然后根据时间的升序去dfs。

代码

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <set>
#include <map>
#define fi first
#define se second
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
// head
const int N = 15;
const int N2 = N * N;
const int M = N*N2*4 + N*N;
const int INF = 0x3f3f3f3f;

int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};

char s[N][N];
int dis[N2][4*N];
vector<PII> d;
vector<PII> p;

void bfs(int x, int n, int m) {
    PII st = p[x];
    int g[N][N];
    memset(g, INF, sizeof g);
    queue<PII> q;
    q.push(st);
    g[st.fi][st.se] = 0;
    while (!q.empty()) {
        PII cur = q.front();
        q.pop();
        for (int dir = 0; dir < 4; dir++) {
            int cx = cur.fi + dx[dir], cy = cur.se + dy[dir];
            if (g[cx][cy] != INF || cx < 0 || cx == n || cy < 0 || cy == m || s[cx][cy] == 'X') continue;
            g[cx][cy] = g[cur.fi][cur.se] + 1;
            if (s[cx][cy] == 'D') continue;
            q.push(make_pair(cx, cy));
        }
    }

    for (int i = 0; i < d.size(); i++) {
        int cx = d[i].fi, cy = d[i].se;
        dis[x][i] = g[cx][cy];
    }
}

void init(int n, int m) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (s[i][j] == 'D') {
                d.push_back(make_pair(i, j));
            } else if (s[i][j] == '.') {
                p.push_back(make_pair(i, j));
            }
        }
    }
    memset(dis, INF, sizeof dis);
    for (int i = 0; i < p.size(); i++) {
        bfs(i, n, m);
    }
}


struct Edge {
    int to, nxt;
    Edge(int to, int nxt) : to(to), nxt(nxt) {}
    Edge() {}
};
int head[M];
Edge e[N2*N2*N*8];
void addEdge(int from, int to, int cnt) {
    e[cnt] = Edge(to, head[from]);
    head[from] = cnt;
}
void init(int n) {
    for (int i = 0; i <= n; i++) head[i] = -1;
}

int match[M];
bool vis[M];

bool dfs(int x) {
    vis[x] = true;
    for (int i = head[x]; ~i; i = e[i].nxt) {
        int to = e[i].to, w = match[to];
        if (w == -1 || (!vis[w] && dfs(w))) {
            match[x] = to;
            match[to] = x;
            return true;
        }
    }
    return false;
}

bool solve(int n, int m) {
    int ec = 0, mx = n*m, off = mx * d.size();
    init(off + p.size());
    for (int i = 0; i < p.size(); i++) {
        for (int j = 0; j < d.size(); j++) {
            for (int k = dis[i][j]; k <= mx; k++) {
                int from = (k-1) * d.size() + j, to = off + i;
                addEdge(from, to, ec++);
                addEdge(to, from, ec++);
            }
        }
    }

    if (p.size() == 0) {
        puts("0");
        return true;
    } else {
        memset(match, -1, sizeof match);
        int ans = 0;
        for (int i = 0; i < off; i++) {
            if (match[i] != -1) continue;
            memset(vis, 0, sizeof vis);
            if (dfs(i)) {
                if (++ans == p.size()) {
                    printf("%d\n", i / d.size() + 1);
                    return true;
                }
            }
        }
    }
    return false;
}

int main() {
    int t, n, m;
    scanf("%d", &t);
    while (t--) {
        scanf("%d%d", &n, &m);
        for (int i = 0; i < n; i++) {
            scanf("%s", s[i]);
        }
        init(n, m);
        if (!solve(n, m)) {
            puts("impossible");
        }
        d.clear();
        p.clear();
    }
    return 0;
}
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页