前言
针对常见的集合数据处理,Java 8引入了一套新的类库,位于包java.util.stream下,称为Stream API。这套API操作数据的思路不同于我们之前介绍的容器类API,它们是函数式的,非常简洁、灵活、易读。
一、接口Stream
接口Stream类似于一个迭代器,但提供了更为丰富的操作,Stream API的主要操作就定义在该接口中。
Java 8给Collection接口增加了两个默认方法,它们可以返回一个Stream,如下所示:
default Stream<E> stream() {
return StreamSupport.stream(spliterator(), false);
}
default Stream<E> parallelStream() {
return StreamSupport.stream(spliterator(), true);
}
stream()返回的是一个顺序流
,parallelStream()返回的是一个并行流
。
顺序流就是由一个线程执行操作,而并行流背后可能有多个线程并行执行。
并行流内部会使用Java 7引入的fork/join框架
,即处理由fork和join两个阶段组成,fork就是将要处理的数据拆分为小块,多线程按小块进行并行计算,join就是将小块的计算结果进行合并。
二、基本示例
1.基本过滤
返回学生列表中90分以上的,传统上的代码一般是这样:
List<Student> above90List = new ArrayList<>();
for (Student t : students) {
if (t.getScore() > 90) {
above90List.add(t);
}
}
log.info(above90List.toString());//[Student{name='wangwu', score=98.0}]
使用Stream API,代码可以这样:
List<Student> above90List = students.stream()
.filter(t -> t.getScore() > 90)
.collect(Collectors.toList());
log.info(above90List.toString());//[Student{name='wangwu', score=98.0}]
2.基本转换
根据学生列表返回名称列表,传统上的代码一般是这样:
List<String> nameList = new ArrayList<>(students.size());
for (Student t : students) {
nameList.add(t.getName());
}
log.info(nameList.toString()); // [zhangsan, lisi, wangwu]
使用Stream API,代码可以这样:
List<String> nameList = students.stream()
.map(Student::getName)
.collect(Collectors.toList());
log.info(nameList.toString()); // [zhangsan, lisi, wangwu]
这里使用了Stream的map函数,它的参数是一个Function函数式接口,这里传递了方法引用。
三、中间操作
不实际触发执行、用于构建流水线、返回Stream的操作称为中间操作
(intermediate operation)
Stream API的中间操作有filter、map、distinct、sorted、skip、limit、peek、mapToLong、mapToInt、mapToDouble、flatMap等
1.distinct
distinct返回一个新的Stream,过滤重复的元素,只留下唯一的元素,是否重复是根据equals方法来比较的,
distinct可以与其他函数(如filter、map)结合使用。比如,返回字符串列表中长度小于3的字符串、转换为小写、只保留唯一的,代码可以为:
List<String> list = Arrays.asList("abc", "def", "hello", "Abc");
List<String> retList = list.stream()
.filter(s -> s.length() <= 3).map(String::toLowerCase).distinct()
.collect(Collectors.toList());
log.info(retList.toString()); // [abc, def]
虽然都是中间操作,但distinct与filter和map是不同的。
filter和map都是无状态
的,对于流中的每一个元素,处理都是独立的,处理后即交给流水线中的下一个操作;
distinct不同,它是有状态
的,在处理过程中,它需要在内部记录之前出现过的元素,如果已经出现过,即重复元素,它就会过滤掉,不传递给流水线中的下一个操作。
对于顺序流,内部实现时,distinct操作会使用HashSet记录出现过的元素,如果流是有顺序的,需要保留顺序,会使用LinkedHashSet。
2.sorted
有两个sorted方法:
Stream<T> sorted()
Stream<T> sorted(Comparator<? super T> comparator)
它们都对流中的元素排序,都返回一个排序后的Stream。
第一个方法假定元素实现了Comparable接口,第二个方法接受一个自定义的Comparator。
比如,过滤得到80分以上的学生,然后按分数从高到低排序,分数一样的按名称排序,代码为:
List<Student> list = students.stream()
.filter(t -> t.getScore() > 80)
.sorted(Comparator.comparing(Student::getScore).reversed().thenComparing(Student::getName))
.collect(Collectors.toList());
log.info(list.toString());
// [Student{name='wangwu', score=98.0}, Student{name='lisi', score=89.0}, Student{name='zhangsan', score=89.0}]
这里,使用了Comparator的comparing、reversed和thenComparing构建了Comparator。
与distinct一样,sorted也是一个有状态
的中间操作,在处理过程中,需要在内部记录出现过的元素。
其不同是,每碰到流中的一个元素,distinct都能立即做出处理,要么过滤,要么马上传递给下一个操作;
sorted需要先排序,为了排序,它需要先在内部数组中保存碰到的每一个元素,到流结尾时再对数组排序,然后再将排序后的元素逐个传递给流水线中的下一个操作。
3.skip/limit
Stream<T> skip(long n) // skip跳过流中的n个元素,如果流中元素不足n个,返回一个空流
Stream<T> limit(long maxSize) // limit限制流的长度为maxSize
比如,将学生列表按照分数排序,返回第3名到第5名,代码为:
List<Student> list = students.stream()
.sorted(Comparator.comparing(Student::getScore).reversed())
.skip(2).limit(3)
.collect(Collectors.toList());
log.info(list.toString()); // [Student{name='lisi', score=89.0}]
skip和limit都是有状态
的中间操作。
对前n个元素,skip的操作就是过滤,对后面的元素,skip就是传递给流水线中的下一个操作。
limit的一个特点是:它不需要处理流中的所有元素,只要处理的元素个数达到maxSize,后面的元素就不需要处理了,这种可以提前结束的操作称为短路操作
。
skip和limit只能根据元素数目进行操作,Java 9增加了两个新方法,相当于更为通用的skip和limit:
//通用的skip,在谓词返回为true的情况下一直进行skip操作,直到某次返回false
default Stream<T> dropWhile(Predicate<? super T> predicate)
//通用的limit,在谓词返回为true的情况下一直接受,直到某次返回false
default Stream<T> takeWhile(Predicate<? super T> predicate)
4.peek
Stream<T> peek(Consumer<? super T> action)
它返回的流与之前的流是一样的,没有变化,但它提供了一个Consumer,会将流中的每一个元素传给该Consumer。
这个方法的主要目的是支持调试,可以使用该方法观察在流水线中流转的元素,比如:
List<String> above90Names = students.stream()
.filter(t -> t.getScore() > 90)
.peek(System.out::println) // Student{name='wangwu', score=98.0}
.map(Student::getName)
.peek(System.out::println) // wangwu
.collect(Collectors.toList());
5.mapToLong/mapToInt/mapToDouble
map函数接受的参数是一个Function<T, R>,为避免装箱/拆箱,提高性能,Stream还有如下返回基本类型特定流的方法:
DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper)
IntStream mapToInt(ToIntFunction<? super T> mapper)
LongStream mapToLong(ToLongFunction<? super T> mapper)
DoubleStream/IntStream/LongStream是基本类型特定的流,有一些专门的更为高效的方法。比如,求学生列表的分数总和,代码为:
double sum = students.stream()
.mapToDouble(Student::getScore)
.sum();
log.info("" + sum); // 276.0
6.flatMap
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper)
它接受一个函数mapper,对流中的每一个元素,mapper会将该元素转换为一个流Stream,然后把新生成流的每一个元素传递给下一个操作。比如:
List<String> lines = Arrays.asList("hello abc", "123 456");
List<String> words = lines.stream()
.flatMap(line -> Arrays.stream(line.split("\\s+")))
.collect(Collectors.toList());
log.info(words.toString()); // [hello, abc, 123, 456]
这里的mapper将一行字符串按空白符分隔为了一个单词流,Arrays.stream可以将一个数组转换为一个流,flatMap完成了一个1到n的映射。
四、终端操作
触发实际执行、返回具体结果的操作称为终端操作
(terminal operation)
Stream API的终端操作有collect、max、min、count、allMatch、anyMatch、noneMatch、findFirst、findAny、forEach、toArray、reduce等。
1.max/min
Optional<T> max(Comparator<? super T> comparator)
Optional<T> min(Comparator<? super T<