一门武功能否传承久远并被发扬光大,是要看缘分的。一般来说,师傅传授给徒弟的武功总要打个折扣,于是越往后传,弟子们的功夫就越弱…… 直到某一支的某一代突然出现一个天分特别高的弟子(或者是吃到了灵丹、挖到了特别的秘笈),会将功夫的威力一下子放大N倍 —— 我们称这种弟子为“得道者”。
这里我们来考察某一位祖师爷门下的徒子徒孙家谱:假设家谱中的每个人只有1位师傅(除了祖师爷没有师傅);每位师傅可以带很多徒弟;并且假设辈分严格有序,即祖师爷这门武功的每个第i代传人只能在第i-1代传人中拜1个师傅。我们假设已知祖师爷的功力值为Z,每向下传承一代,就会减弱r%,除非某一代弟子得道。现给出师门谱系关系,要求你算出所有得道者的功力总值。
输入格式:
输入在第一行给出3个正整数,分别是:N(<=105)——整个师门的总人数(于是每个人从0到N-1编号,祖师爷的编号为0);Z——祖师爷的功力值(不一定是整数,但起码是正数);r ——每传一代功夫所打的折扣百分比值(不超过100的正数)。接下来有N行,第i行(i=0, ..., N-1)描述编号为i的人所传的徒弟,格式为:
Ki ID[1] ID[2] ... ID[Ki]
其中Ki是徒弟的个数,后面跟的是各位徒弟的编号,数字间以空格间隔。Ki为零表示这是一位得道者,这时后面跟的一个数字表示其武功被放大的倍数。
输出格式:
在一行中输出所有得道者的功力总值,只保留其整数部分。题目保证输入和正确的输出都不超过1010。
输入样例:10 18.0 1.00 3 2 3 5 1 9 1 4 1 7 0 7 2 6 1 1 8 0 9 0 4 0 3输出样例:
404
这一题折磨我有点久,开始使用深搜,用二维数组将数据存入,a[i][]存第i行数据,然后深搜,最后由于数组空间问题不能全过;
后来就使用两个数组,一个一维 一个二维,一维数组存所有的徒弟,二维数组存每个人的第一个徒弟的位置和徒弟个数
#include<iostream>
#include<stdio.h>
#include<fstream>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<map>
using namespace std;
int a[150000][3]={0};
int b[150000];
double w,t,s=0;
int l=0;
void ss(int ks)
{
int n,i;
i=a[ks][1];//取第一个徒弟位置
n=a[ks][2];//取徒弟个数或者是功力增长倍数
if(i==-1)//表示没有徒弟即得道者
{
s=s+pow(t,l)*n*w;//求功力
return;
}
for(;i<n+a[ks][1];i++)
{
l++;
ss(b[i]);
l--;
}
return;
}
int main()
{
int n;
cin>>n>>w>>t;
t=1-t/100;
int i,j;
int k=0;
for(i=0;i<n;i++)
{
int m;
cin>>m;
if(m!=0)
{
a[i][1]=k;//存i的第一个徒弟开始位置
a[i][2]=m;//存i的徒弟个数
for(j=0;j<m;j++)
{
int x;
cin>>x;
a[x][0]=i;//存师傅(我并没用到,所以这个数据没用)
b[k]=x;
k++;
}
}
else
{
a[i][1]=-1;//标记表示是得道着
int x;
cin>>x;
a[i][2]=x;//存功力增加的倍数
}
}
ss(0);
printf("%d",(int)s);
return 0;
}