机器学习(一)数据获取和数据标注

  最近在B站上复习李沐老师的机器学习课程,在此记录。下面图片多来自课程课件

课程主页:stanford cs 329

1.1 机器学习的重要内容3’

Data
Model training
Development

在这里插入图片描述

Workflow

在这里插入图片描述

Data

1.2 Data Acquisition

在这里插入图片描述

常见的提供数据集的平台:paperswithcodes, kaggle, google, tensorflow…
数据一般可以分为这几类:academic data, competitive data and raw data. 学术和竞赛数据一般更干净,但数据量会较小,原始数据量可能很大,但数据可能噪声很多,需要做大量的清理工作。
关于数据进入模型前的处理一般包括这几个步骤:
Data Labelling – Data exploration – Data Cleaning – Data Transformation – Feature Engineering。后面会逐个介绍。

1.3 Web Scrapping

网络数据抓取,“爬虫”。(不过一般的“爬数据”指的是整个网页的抓取,web scrapping 倾向于对网页中具体数据的获取。
一般用到 python 里面一个叫 selenium 的库,用 beautifulsoup 包解析 html。
要注意的是,web scrapping 所要考虑的成本不只是“爬”,还有“存”(当然还有之后的数据处理)。

1.4 Data Labelling

1)什么是label(标签)?
标签可以理解为 模型的已知输出或结果,比如我们做一个图片分类问题,“猫”,“狗”就可以是某一张图片的label。
2)How to improve labels?
在这里插入图片描述
这里主要涉及到三个技术:semi-supervision, crowdsourcing, active learning, weak supervision,也就是 半监督,手动打标签(雇人判断 eg. Imagenet 数据集),灵活学习和弱监督

Semi-supervision Learning

适用场景:只有小部分的 labeled data,有大量 unlabeled data。
假设:

  1. 特征相似的数据视为同label。
  2. cluster 内在结构一致视为同label。
  3. Manifold(流型),降维得到更干净的数据。
    manifold 思想介绍:Manifold 基本思想

在这里插入图片描述

策略:Self-training

主要三步:

  1. train:用带标签的数据训练模型
  2. predict: 用训练出来的模型对没有标签的数据进行预测,给其附上标签。
  3. merge: 把新打上标签的数据和之前的有标签的数据进行合并,之后再一起开启下一轮训练…
    在这里插入图片描述
    注意:predict 之后,置信的数据才能合并
    那不置信的数据怎么办呢?这里就要用到 weak supervision 了。一般来说,我们semi-supervision 和 Active learning 是一起用的。

Active Learning

和 Self -training 类似,但是有人为干预,也就是把非置信的数据人为的打上 label

在这里插入图片描述
Flow:
在这里插入图片描述

一般用 Active Learning + Self-training.

Weak Supervision

weak supervision 最是常用了,它是利用数据的一些规律,半自动的生成 label。
举个栗子:

def check_out(x): # 含“check out”的视为垃圾邮件
    return SPAM if "check out" in x.lower() else ABSTAIN

def sentiment(x):#sentiment_polarity(x) 计算情感极性(通常是一个介于 -1 和 1 之间的值,其中 1 表示非常积极,-1 表示非常消极)。情感极性大于 0.9,认为文本情感非常积极
    return HAM if sentiment_polarity(x) > 0.9 else ABSTAIN

def short_comment(x):# 文本分割成单词后,个数小于5,视为短文本
    return HAM if len(x.split()) < 5 else ABSTAIN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值