合并排序作为一种很经典的排序算法,其主要核心思想在于先递归分治,再将小的结果合并起来成为最终结果,其T(n)=O(nlogn);已经达到了排序算法的下界
之前竟然忘记了有template这个功能,现在试着用用,果然程序更灵活了.
代码如下:
//MergeSort
//by xcz on 2013.7.3
#include <iostream>
using namespace std;
template <class type>
void MergeSort(type a[],int left,int right);//合并排序
template <class type>
void Merge(type c[],type d[],int left,int middle,int right);//合并,主要算法在此
int a[] = {10,5,9,4,3,7,8,1};
int b[8];
int main()
{
cout<<"before mergesort:"<<endl;
for (int i=0;i<8;++i)
{
cout<<a[i]<<" ";
}
cout<<endl;
MergeSort(a,0,7);
cout<<"after mergesort:"<<endl;
for (int i=0;i<8;++i)
{
cout<<a[i]<<" ";
}
cout<<endl;
system("pause");
}
//合并两个已经排好序的两段,不断比较两段最小值放入数组b中
template <class type>
void Merge(type c[],type d[],int left,int middle,int right)
{
int i=left,j=middle+1,k=left;
//开始比较最小值,这时候两段都还有数,有点类似信息检索中的目录检索
while((i<=middle)&&(j<=right))
{
if (c[i]<=c[j])
{
d[k++] = c[i++];
}
else
{
d[k++] = c[j++];
}
}
//这个时候已经有一段全部放入数组d中了,将余下一段剩下的放入d中就ok了
//剩下后半段
if (i>middle)
{
for (int h=j; h<=right;++h)
{
d[k++] = c[h];
}
}
//剩下前半段
else
{
for (int h=i; h<=right;++h)
{
d[k++] = c[h];
}
}
for (int i=0;i<8;++i)
{
cout<<d[i]<<" ";
}
cout<<endl;
}
//主要是递归划分,当只有2个或者1个元素的时候,才开始排序,合并
template <class type>
void MergeSort(type a[],int left,int right)
{
if (left<right)
{
int i = (left + right)/2;
MergeSort(a,left,i); //将左边进行合并排序
MergeSort(a,i+1,right); //将右边进行合并排序
Merge(a,b,left,i,right); //将数组a合并到数组b中;
//将数组b复制到数组a中
for (int j=left;j<=right;++j)
{
a[j]=b[j];
}
}
}