
-
input : 读取文本文件;
-
splitting : 将文件按照行进行拆分,此时得到的
K1行数,V1表示对应行的文本内容; -
mapping : 并行将每一行按照空格进行拆分,拆分得到的
List(K2,V2),其中K2代表每一个单词,由于是做词频统计,所以V2的值为 1,代表出现 1 次; -
shuffling:由于
Mapping操作可能是在不同的机器上并行处理的,所以需要通过shuffling将相同key值的数据分发到同一个节点上去合并,这样才能统计出最终的结果,此时得到K2为每一个单词,List(V2)为可迭代集合,V2就是 Mapping 中的 V2; -
Reducing : 这里的案例是统计单词出现的总次数,所以
Reducing对List(V2)进行归约求和操作,最终输出。
MapReduce 编程模型中 splitting 和 shuffing 操作都是由框架实现的,需要我们自己编程实现的只有 mapping 和 reducing,这也就是 MapReduce 这个称呼的来源。
combiner 是 map 运算后的可选操作,它实际上是一个本地化的 reduce 操作,它主要是在 map 计算出中间文件后做一个简单的合并重复 key 值的操作。
partitioner 可以理解成分类器,将 map 的输出按照 key 值的不同分别分给对应的 reducer,支持自定义实现。
MapReduce模型解析与应用
3569

被折叠的 条评论
为什么被折叠?



