(超详细)大数据Hadoop之MapReduce组件

一、MapReduce 简介

1.1 MapReduce的概述

在Hadoop生态圈中,MapReduce属于核心,负责进行分布式计算。
请添加图片描述

MapReduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的 分布式运算程序,并发运行在一个 Hadoop 集群上。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TTUyvkEh-1640235355989)(C:\Users\86157\Desktop\javatest\大数据开发\Hadoop框架\Hadoop生态圈.png)]

1.2 MapReduce的优点

1)MapReduce 易于编程 它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量 廉价的 PC 机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一 样的。就是因为这个特点使得 MapReduce 编程变得非常流行。

2)良好的扩展性 当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。

3)高容错性 MapReduce 设计的初衷就是使程序能够部署在廉价的 PC 机器上,这就要求它具有很高 的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行, 不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由 Hadoop 内部完成的。

4)适合 PB 级以上海量数据的离线处理 可以实现上千台服务器集群并发工作,提供数据处理能力。

1.3 MapReduce的缺点

1)不擅长实时计算 尚硅谷大数据技术之 Hadoop(MapReduce) MapReduce 无法像 MySQL 一样,在毫秒或者秒级内返回结果。

2)不擅长流式计算 流式计算的输入数据是动态的,而 MapReduce 的输入数据集是静态的,不能动态变化。 这是因为 MapReduce 自身的设计特点决定了数据源必须是静态的。

3)不擅长 DAG(有向无环图)计算 多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下, MapReduce 并不是不能做,而是使用后,每个 MapReduce 作业的输出结果都会写入到磁盘, 会造成大量的磁盘 IO,导致性能非常的低下。

1.4 MapReduce核心思想

请添加图片描述

(1)分布式的运算程序往往需要分成至少 2 个阶段。

(2)第一个阶段的 MapTask 并发实例,完全并行运行,互不相干。

(3)第二个阶段的 ReduceTask 并发实例互不相干,但是他们的数据依赖于上一个阶段 的所有 MapTask 并发实例的输出。

(4)MapReduce 编程模型只能包含一个 Map 阶段和一个 Reduce 阶段,如果用户的业 务逻辑非常复杂,那就只能多个 MapReduce 程序,串行运行。 总结:分析 WordCount 数据流走向深入理解 MapReduce 核心思想

环形缓冲区将在溢写到80%的时候就开始写入分区,目的提高环形缓冲区的利用率,使其一直处于高速运转。

二、MapReduce代码

2.1 MapReduce 进程

一个完整的 MapReduce 程序在分布式运行时有三类实例进程:

(1)MrAppMaster:负责整个程序的过程调度及状态协调。

(2)MapTask:负责 Map 阶段的整个数据处理流程。

(3)ReduceTask:负责 Reduce 阶段的整个数据处理流程。

2.2 MapReduce 编程规范

编程规范 用户编写的程序分成三个部分:Mapper、Reducer 和 Driver。

1.Mapper阶段

(1)用户自定义的Mapper要继承自己的父类
(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)
(3)Mapper中的业务逻辑写在map()方法中
(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)
(5)map()方法(MapTask进程)对每一个调用一次

2.Reducer阶段
(1)用户自定义的Reducer要继承自己的父类
(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV
(3)Reducer的业务逻辑写在reduce()方法中
(4)ReduceTask进程对每一组相同k的组调用一次reduce()方法

3.Driver阶段
当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是 封装了MapReduce程序相关运行参数的job对象

三、WordCount 案例实操

3.1 需求

输入数据:hello.txt

输出数据:atguigu 2 banzhang 1 cls 2 hadoop 1 jiao 1 ss 2 xue 1

按照 MapReduce 编程规范,分别编写 MapperReducerDriver

3.2 环境准备

(1)创建maven工程,MapReduceDemo

(2)在pom.xml文件中添加如下依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>MapReduceDemo</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>15</maven.compiler.source>
        <maven.compiler.target>15</maven.compiler.target>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.3</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.30</version>
        </dependency>
    </dependencies>
   
</project>

在项目src/main/resources目录下,新建一个文档命名为“log4j.properties”

log4j.rootLogger=INFO, stdout  log4j.appender.stdout=org.apache.log4j.ConsoleAppender  log4j.appender.stdout.layout=org.apache.log4j.PatternLayout  log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n  log4j.appender.logfile=org.apache.log4j.FileAppender  log4j.appender.logfile.File=target/spring.log  log4j.appender.logfile.layout=org.apache.log4j.PatternLayout  log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n 
3.3 编写程序

新建项目word1目录

WordCountMapper.java

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
/**
 * KEYIN, Mapper阶段输入的key的类型:Text
 * VALUEIN,Mapper阶段输入value类型:IntWritable
 * KEYOUT,Mapper阶段输出的Key类型:Text
 * VALUEOUT,Mapper阶段输出的value类型:IntWritable
 */
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
    protected Text outK = new Text();
    protected IntWritable outV = new IntWritable(1);
    @Override
    protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {
        //1.获取第一行
        String line = value.toString();

        //2.切割
        String[] words = line.split(" ");

        //3.循环写入
        for(String word:words){
            outK.set(word);
            context.write(outK,outV);
        }
    }
}

WordCountReducer.java类

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * KEYIN, reduce阶段输入的key的类型:Text
 * VALUEIN,reduce阶段输入value类型:IntWritable
 * KEYOUT,reduce阶段输出的Key类型:Text
 * VALUEOUT,reduce阶段输出的value类型:IntWritable
 */

public class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable outV = new IntWritable();
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        //atguigu(1,1)
        for(IntWritable value : values){
            sum += value.get();
        }
        outV.set(sum);
        context.write(key,outV);
    }
}

WordCountDriver类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;

import java.io.IOException;

public class WordCountDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        // 1.获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 2.设置jar包路径
        job.setJarByClass(WordCountDriver.class);
        // 3.关联mapper和reduce
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        // 4.设置map输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        // 5.设置最终的输出kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // 6.设置输入的路径
        FileInputFormat.setInputPaths(job, new Path("D:\\input"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\outputess"));
        // 7.提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

这个是就是我们WordCount案例的全部代码

运行和我们需要的结果一样

3.4 提交到集群测试上
 <build>
        <plugins>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.8.1</version>
                <configuration>
                    <source>15</source>
                    <target>15</target>
                </configuration>
            </plugin>
            <plugin>
            <artifactId>maven-assembly-plugin</artifactId>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <id>make-assembly</id>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
        </plugins>
    </build>

将这些代码加入到我们的配置文件中

在这里插入图片描述

配置成功后会在此目录下生产这个文件

wc.jar

在hadoop集群上启动WordCount程序

试着启动他,输入:

hadoop jar MapReduceDemo-1.0-SNAPSHOT.jar mapreduce.word2.WordCountDriver /sanguo /outputss

运行成功,其实这之间出现了很多bug我在之前的博客中已经有提到感兴趣的可以去看一下

3.5Hadoop 序列化
1) 序列化

序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁 盘(持久化)和网络传输。

反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换 成内存中的对象。

2) 为什么要序列化

​ 一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能 由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的” 对象,可以将“活的”对象发送到远程计算机。

3) 为什么不用 Java 的序列化

Java 的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带 很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以, Hadoop 自己开发了一套序列化机制(Writable)。

4)序列化逻辑

1)要自己写一个继承Writable

2)反序列化的时候,需要反射调用空参构造函数,所以必须有空参构造

//空参构造
public FlowBan() {
}

3)重写序列化方法

//序列化
@Override
public void write(DataOutput out) throws IOException {
    out.writeLong(upFlow);
    out.writeLong(downFlow);
    out.writeLong(sumFlow);
}

4)重写反序列化方法

//反序列化
@Override
public void readFields(DataInput in) throws IOException {
    this.upFlow = in.readLong();
    this.downFlow = in.readLong();
    this.sumFlow = in.readLong();
}

5)注意反序列化的顺序和序列化的顺序完全一致

6)想要把结果显示的文件中,需要重写toString(),可用"\t"分开,方便后续使用

7)如果需要将自定义的bean放在key中传输,则需要实现Comparable 接口,因为

MapReduce 框中的 Shuffle 过程要求对 key 必须能排序。

@Override 
public int compareTo(FlowBean o) { // 倒序排列,从大到小 return this.sumFlow > o.getSumFlow() ? -1 : 1; } 

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-19xEkDgT-1640235355991)(C:\Users\86157\AppData\Local\Temp\1640228602390.png)]

5)编写业务代码

编写一个Bean对象

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * 1、定义类实现writable接口
 * 2、重写序列化和反序列化方法
 * 3、重写空参构造
 * 4、toString方法
 */
public class FlowBan implements Writable {
    private Long upFlow;
    private Long downFlow;
    private long sumFlow; // 总流量

    public Long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(Long upFlow) {
        this.upFlow = upFlow;
    }

    public Long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(Long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }
    public void setSumFlow() {
        this.sumFlow = this.downFlow + this.upFlow;
    }

    //空参构造
    public FlowBan() {
    }

    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }

    //序列化
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }

    //反序列化
    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readLong();
        this.downFlow = in.readLong();
        this.sumFlow = in.readLong();
    }
}

编写一个Mapper类

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBan> {
    private Text outK = new Text();
    private FlowBan outV = new FlowBan();
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBan>.Context context) throws IOException, InterruptedException {
        //获取一行
        String line = value.toString();
        //切割
        String[] split = line.split("\t");
        //抓取想要的数据
        //手机号
        //上行流量,下行流量
        String phone = split[1];
        //流量从后往前取
        String up = split[split.length - 3];
        String down = split[split.length - 2];
        //封装
        outK.set(phone);
        outV.setUpFlow(Long.parseLong(up));
        outV.setDownFlow(Long.parseLong(down));
        outV.setSumFlow();
        //写出
        context.write(outK, outV);
    }
}

编写Reducer类

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBan> {
    private Text outK = new Text();
    private FlowBan outV = new FlowBan();
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBan>.Context context) throws IOException, InterruptedException {
        //获取一行
        String line = value.toString();
        //切割
        String[] split = line.split("\t");
        //抓取想要的数据
        //手机号
        //上行流量,下行流量
        String phone = split[1];
        //流量从后往前取
        String up = split[split.length - 3];
        String down = split[split.length - 2];
        //封装
        outK.set(phone);
        outV.setUpFlow(Long.parseLong(up));
        outV.setDownFlow(Long.parseLong(down));
        outV.setSumFlow();
        //写出
        context.write(outK, outV);
    }
}

编写Driver驱动类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        //获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        //设置jar
        job.setJarByClass(FlowDriver.class);
        //关联mapper和reducer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);
        //设置mapper输出key和value
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBan.class);
        //设置最终的数据输出的key和value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBan.class);
        //设置数据的输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\datas\\01"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\datas\\02"));
        //提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

完美运行

3.6 重要的一点

通过这次配置,我们可以在windows上写好mapreduce然后打包的集群上运行。

四、MapReduce框架的原理

在这个框架中主要分为3个阶段

MapTask,Shuffle,ReduceTask

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Uwn7HOvq-1640235355991)(C:\Users\86157\AppData\Local\Temp\1640228631939.png)]

4.1 InputFormat数据输入

MapTask 的并行度决定 Map 阶段的任务处理并发度,进而影响到整个 Job 的处理速度。

思考:1G 的数据,启动 8 个 MapTask,可以提高集群的并发处理能力。那么 1K 的数 据,也启动 8 个 MapTask,会提高集群性能吗?MapTask 并行任务是否越多越好呢?哪些因 素影响了 MapTask 并行度?

概念
数据块:Block 是 HDFS 物理上把数据分成一块一块。数据块是 HDFS 存储数据单位。
数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行
存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。

![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9rba3jlm-1640235355992)(C:\Users\86157\AppData\Local\Temp\1640228695244.png)](https://img-blog.csdnimg.cn/9fc345035f404950aff737ef6871ce43.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5bCP6LW15ZGi,size_20,color_FFFFFF,t_70,g_se,x_16)

2)job提交流程源码详解

waitForCompletion() 

submit(); 

// 1 建立连接 

	connect(); 
	// 1)创建提交 Job 的代理 
	new Cluster(getConfiguration()); 
		// (1)判断是本地运行环境还是 yarn 集群运行环境 
		initialize(jobTrackAddr, conf);  
// 2 提交 job submitter.submitJobInternal(Job.this, cluster) 
	// 1)创建给集群提交数据的 Stag 路径 	Path jobStagingArea=JobSubmissionFiles.getStagingDir(cluster, conf); 
	// 2)获取 jobid ,并创建 Job 路径 
	JobID jobId = submitClient.getNewJobID(); 
	// 3)拷贝 jar 包到集群 
	copyAndConfigureFiles(job, submitJobDir); 
	rUploader.uploadFiles(job, jobSubmitDir); 
	// 4)计算切片,生成切片规划文件 
	writeSplits(job, submitJobDir); 
	maps = writeNewSplits(job, jobSubmitDir); 
	input.getSplits(job); 
	// 5)向 Stag 路径写 XML 配置文件 writeConf(conf, submitJobFile); 
	conf.writeXml(out); 
	// 6)提交 Job,返回提交状态 
	status = submitClient.submitJob(jobId, submitJobDir.toString(), 

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CRQ9HoHn-1640235355992)(C:\Users\86157\AppData\Local\Temp\1640228808827.png)]

3)FileInputFormat切片源码解析

切片机制

(1)简单地按照文件的内容长度进行切片

(2)切片大小,默认等于Block大小

(3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

案例:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aRxR2drr-1640235355993)(C:\Users\86157\AppData\Local\Temp\1640228848487.png)]

源码中计算切片大小的公式

Math.max(minSize, Math.min(maxSize, blockSize));

由于

mapreduce.input.fileinputformat.split.minsize=1 默认值为1

mapreduce.input.fileinputformat.split.maxsize= Long.MAXValue 默认值Long.MAXValue

因此,默认情况下,切片大小=blocksize。

切片大小设置

maxsize(切片最大值):参数如果调得比blockSize小,则会让切片变小,而且就等于配置的这个参数的值。 minsize(切片最小值):参数调的比blockSize大,则可以让切片变得比blockSize还大。

4)TextInputFormat

FileInputFormat 实现类

思考:在运行 MapReduce 程序时,输入的文件格式包括:基于行的日志文件、二进制 格式文件、数据库表等。那么,针对不同的数据类型,MapReduce 是如何读取这些数据的呢?

FileInputFormat 常见的接口实现类包括:TextInputFormat、KeyValueTextInputFormat、 NLineInputFormat、CombineTextInputFormat 和自定义 InputFormat 等。

TextInputFormat

TextInputFormat 是默认的 FileInputFormat 实现类。按行读取每条记录。 键是存储该行在整个文件中的起始字节偏移量, LongWritable 类型。值是这行的内容,不包括任何行终止 符(换行符和回车符),Text 类型。

5)CombineTextInputFormat 切片机制

框架默认的 TextInputFormat 切片机制是对任务按文件规划切片,不管文件多小,都会 是一个单独的切片,都会交给一个 MapTask,这样如果有大量小文件,就会产生大量的 MapTask,处理效率极其低下。

应用场景:

CombineTextInputFormat 用于小文件过多的场景,它可以将多个小文件从逻辑上规划到 一个切片中,这样,多个小文件就可以交给一个 MapTask 处理。

虚拟存储切片最大值设置:

CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m 注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。

切片机制:

生成切片过程包括:虚拟存储过程和切片过程二部分。

虚拟存储过程

将输入目录下所有文件大小,依次和设置的 setMaxInputSplitSize 值比较,如果不 大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍, 那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值 2 倍,此时 将文件均分成 2 个虚拟存储块(防止出现太小切片)。

例如 setMaxInputSplitSize 值为 4M,输入文件大小为 8.02M,则先逻辑上分成一个 4M。剩余的大小为 4.02M,如果按照 4M 逻辑划分,就会出现 0.02M 的小的虚拟存储 文件,所以将剩余的 4.02M 文件切分成(2.01M 和 2.01M)两个文件。

6)CombineTextInputFormat 案例实操

需求:将输入的大量文件合并成统一切片统一处理

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QMYB1zKy-1640235355993)(C:\Users\86157\AppData\Local\Temp\1640229072734.png)]

期望:

一个切片处理4个文件

不做任何处理直接用wordcount案例直接运行

number of splits:4

观察切片有4个

在Driver中添加如下代码,运行程序

//设置一下切片规则
job.setInputFormatClass(CombineTextInputFormat.class);
//设置20m大小,不会切片切4个
CombineTextInputFormat.setMaxInputSplitSize(job,4194304);

number of splits:3

改成20m

//设置一下切片规则
job.setInputFormatClass(CombineTextInputFormat.class);
//设置20m大小,不会切片切4个
CombineTextInputFormat.setMaxInputSplitSize(job,20971520);

number of splits:1

4.2 MapReduce 工作流程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fxgxT4a2-1640235355994)(C:\Users\86157\AppData\Local\Temp\1640229095508.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0htnmECH-1640235355994)(C:\Users\86157\AppData\Local\Temp\1640229106296.png)]

这是MapReduce详解图

上面的流程是整个 MapReduce 最全工作流程,但是 Shuffle 过程只是从第 7 步开始到第 16 步结束,具体 Shuffle 过程详解,如下:

(1)MapTask 收集我们的 map()方法输出的 kv 对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用 Partitioner 进行分区和针对 key 进行排序
(5)ReduceTask 根据自己的分区号,去各个 MapTask 机器上取相应的结果分区数据
(6)ReduceTask 会抓取到同一个分区的来自不同 MapTask 的结果文件,ReduceTask 会 将这些文件再进行合并(归并排序)

(7)合并成大文件后,Shuffle 的过程也就结束了,后面进入 ReduceTask 的逻辑运算过 程(从文件中取出一个一个的键值对 Group,调用用户自定义的 reduce()方法)

注意:

​ 1)Shuffle 中的缓冲区大小会影响到 MapReduce 程序的执行效率,原则上说,缓冲区 越大,磁盘 io 的次数越少,执行速度就越快。
2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb 默认 100M。

4.3 Shuffle机制

Map 方法之后,Reduce 方法之前的数据处理过程称之为 Shuffle。

在缓冲区中达到80%就会,写出:目的是为了防止堆栈

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SQKHGDRg-1640235355994)(C:\Users\86157\AppData\Local\Temp\1640234753370.png)]

Partition 分区

1、问题引出 要求将统计结果按照条件输出到不同文件中(分区)。比如:将统计结果按照手机 归属地不同省份输出到不同文件中(分区)

默认分区是:根据key的hashCode对ReduceTasks个数取模得到的。用户没法控制哪个 key存储到哪个分区

自定义Partitioner步骤

1)自定义类继承Partitioner ,重写getPartition()方法

public class ProvincePartitoner2 extends Partitioner<FlowBan, Text> {

    @Override
    public int getPartition(FlowBan flowBan, Text text, int i) {
        return partiton;
    }
}

2)在job驱动中,设置自定义Partitioner

job.setPartitionerClass(ProvincePartitoner2.class);

3)自定义Partition后,要根据自定义Partitioner的逻辑设置相应数量的ReduceTask

job.setNumReduceTasks(5);

分区总结:

自定义文件输出案例

需求
将统计结果按照手机归属地不同省份输出到不同文件中(分区)
(1)输入数据 phone_data .txt
(2)期望输出数据 手机号 136、137、138、139 开头都分别放到一个独立的 4 个文件中,其他开头的放到 一个文件中。

在3.5的案例中添加一个分区类

public class ProvincePartitoner2 extends Partitioner<FlowBan, Text> {

    @Override
    public int getPartition(FlowBan flowBan, Text text, int i) {
        String phone = text.toString();
        String prePhoen = phone.substring( 0 , 3 );
        int partiton;
        if("136".equals(prePhoen)){
            partiton = 0;
        }else if ("137".equals(prePhoen)) {
            partiton = 1;
        }else if ("138".equals(prePhoen)) {
            partiton = 2;
        }else if ("139".equals(prePhoen)) {
            partiton = 3;
        }else {
            partiton = 4;
        }
        return partiton;
    }
}

驱动类添加函数

public class FlowDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        //获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        //设置jar
        job.setJarByClass(FlowDriver.class);
        //关联mapper和reducer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);
        // 4 设置mapper 输出的key和value类型
        job.setMapOutputKeyClass(FlowBan.class);
        job.setMapOutputValueClass(Text.class);
        // 5 设置最终数据输出的key和value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBan.class);

        job.setPartitionerClass(ProvincePartitoner2.class);
        job.setNumReduceTasks(5);
        //设置数据的输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\datas\\partitioner2"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\datas\\PandW"));
        //提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

运行成功

全排序案例实操

需求

根据案例 3.5 序列化案例产生的结果再次对总流量进行倒序排序。

次次我们用到的输入数据是

期待输出,总流量从大到小

代码实现

/**
 * 1、定义类实现writable接口
 * 2、重写序列化和反序列化方法
 * 3、重写空参构造
 * 4、toString方法
 */
public class FlowBan implements WritableComparable<FlowBan> {
    private Long upFlow;
    private Long downFlow;
    private long sumFlow; // 总流量

    public Long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(Long upFlow) {
        this.upFlow = upFlow;
    }

    public Long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(Long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public void setSumFlow() {
        this.sumFlow = this.downFlow + this.upFlow;
    }

    //空参构造
    public FlowBan() {
    }

    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }

    //序列化
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }

    //反序列化
    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readLong();
        this.downFlow = in.readLong();
        this.sumFlow = in.readLong();
    }

    @Override
    public int compareTo(FlowBan o) {

        // 总流量的倒序排序
        if (this.sumFlow > o.sumFlow) {
            return -1;
        } else if (this.sumFlow < o.sumFlow) {
            return 1;
        } else {
            // 按照上行流量的正序排
            if (this.upFlow > o.upFlow) {
                return 1;
            } else if (this.upFlow < o.upFlow) {
                return -1;
            } else {
                return 0;
            }
        }
    }
}

Mapper 类不用变

Reducer类

public class FlowReducer extends Reducer<FlowBan, Text, Text, FlowBan> {

    @Override
    protected void reduce(FlowBan key, Iterable<Text> values, Context context) throws IOException, InterruptedException {

        for (Text value : values) {

            context.write(value, key);
        }
    }
}

需要将两者位置调换一下,以总流量为键

public class FlowDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        //获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        //设置jar
        job.setJarByClass(FlowDriver.class);
        //关联mapper和reducer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);
        // 4 设置mapper 输出的key和value类型
        job.setMapOutputKeyClass(FlowBan.class);
        job.setMapOutputValueClass(Text.class);

        // 5 设置最终数据输出的key和value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBan.class);
        //设置数据的输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\datas\\02"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\datas\\partitioner3"));
        //提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

运行成功

区内排序实操

需求:

要求每个省份手机号输出的文件中按照总流量内部排序。 基于前一个需求,增加自定义分区类,分区按照省份手机号设置

增加自定义分区类

public class ProvincePartitoner2 extends Partitioner<FlowBan, Text> {

    @Override
    public int getPartition(FlowBan flowBan, Text text, int i) {
        String phone = text.toString();
        String prePhoen = phone.substring( 0 , 3 );
        int partiton;
        if("136".equals(prePhoen)){
            partiton = 0;
        }else if ("137".equals(prePhoen)) {
            partiton = 1;
        }else if ("138".equals(prePhoen)) {
            partiton = 2;
        }else if ("139".equals(prePhoen)) {
            partiton = 3;
        }else {
            partiton = 4;
        }
        return partiton;
    }
}

在Driver在添加分区类

job.setPartitionerClass(ProvincePartitoner2.class);
job.setNumReduceTasks(5);
4.4 OutputFormat 数据输出
OutputFormat 接口实现类

OutputFormat是MapReduce输出的基类,所有实现MapReduce输出都实现了 OutputFormat 接口。下面我们介绍几种常见的OutputFormat实现类。

1.OutputFormat实现类

2.默认输出格式TextOutputFormat

3. 应用场景例如:输出数据到MySQL/HBase/Elasticsearch等存储框架中。 3.2 自定义OutputFormat步骤 ➢ 自定义一个类继承FileOutputFormat。 ➢ 改写RecordWriter,具体改写输出数据的方法write()。

编写LogMapper类

public class LogMapper extends Mapper<LongWritable , Text,Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        context.write(value,NullWritable.get());
    }
}

编写LogReducer类

public class LogReducer extends Reducer<Text, NullWritable,Text,NullWritable> {
    @Override
    protected void reduce(Text key, Iterable<NullWritable> values, Reducer<Text, NullWritable, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        //for循环防止有相同的数据,丢失数据
        for (NullWritable value : values) {
            context.write(key,NullWritable.get());
        }
    }
}

自定义一个LogOutputFormat类

public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> {

    private Object job;

    @Override
    public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
        LogRecordWriter lrw = new LogRecordWriter(job);
        return lrw;
    }
}

编写LogRecordWriter

public class LogRecordWriter extends RecordWriter<Text, NullWritable> {

    private FSDataOutputStream atout;
    private FSDataOutputStream otout;

    public LogRecordWriter(TaskAttemptContext job) {
        //准备创建两条流
        try {
            FileSystem fs = FileSystem.get(job.getConfiguration());
            atout = fs.create(new Path("D:\\datas\\001\\atguigu.log"));
            otout = fs.create(new Path("D:\\datas\\002\\other.log"));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void write(Text text, NullWritable nullWritable) throws IOException, InterruptedException {
        //具体写
        String s = text.toString();
        if (s.contains("atguigu"))
        {
            atout.writeBytes(s+"\n");
        }else {
            otout.writeBytes(s+"\n");
        }

    }

    @Override
    public void close(TaskAttemptContext taskAttemptContext) throws IOException, InterruptedException {
        //关流
        IOUtils.closeStream(atout);
        IOUtils.closeStream(otout);
    }
}

编写LogDriver

public class LogDriver {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        job.setJarByClass(LogDriver.class);
        job.setMapperClass(LogMapper.class);
        job.setReducerClass(LogReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        //设置自定义的outputformat
        job.setOutputFormatClass(LogOutputFormat.class);

        FileInputFormat.setInputPaths(job, new Path("D:\\datas\\inputoutputformat"));
        //虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat
        //而fileoutputformat要输出一个_SUCCESS文件,所以在这还得指定一个输出目录
        FileOutputFormat.setOutputPath(job, new Path("D:\\datas\\output1111"));

        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);

    }
}
4.5 MapTask机制

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YRUt9jEa-1640236225649)(C:\Users\86157\AppData\Local\Temp\1640229095508.png)]

(1)Read 阶段:MapTask 通过 InputFormat 获得的 RecordReader,从输入 InputSplit 中 解析出一个个 key/value。

(2)Map 阶段:该节点主要是将解析出的 key/value 交给用户编写 map()函数处理,并 产生一系列新的 key/value。

(3)Collect 收集阶段:在用户编写 map()函数中,当数据处理完成后,一般会调用 OutputCollector.collect()输出结果。在该函数内部,它会将生成的 key/value 分区(调用 Partitioner),并写入一个环形内存缓冲区中。

(4)Spill 阶段:即“溢写”,当环形缓冲区到80%后,MapReduce 会将数据写到本地磁盘上, 生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排 序,并在必要时对数据进行合并、压缩等操作。
溢写阶段详情:
步骤 1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号 Partition 进行排序,然后按照 key 进行排序。这样,经过排序后,数据以分区为单位聚集在 一起,且同一分区内所有数据按照 key 有序。
步骤 2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件中output/spillN.out(N 表示当前溢写次数)中。如果用户设置了 Combiner,则写入文件之 前,对每个分区中的数据进行一次聚集操作。
步骤 3:将分区数据的元信息写到内存索引数据结构 SpillRecord 中,其中每个分区的元 信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过 1MB,则将内存索引写到文件 output/spillN.out.index 中。

(5)Merge 阶段:当所有数据处理完成后,MapTask 对所有临时文件进行一次合并, 以确保最终只会生成一个数据文件。
当所有数据处理完后,MapTask 会将所有临时文件合并成一个大文件,并保存到文件 output/file.out 中,同时生成相应的索引文件 output/file.out.index。
在进行文件合并过程中,MapTask 以分区为单位进行合并。对于某个分区,它将采用多 轮递归合并的方式。每轮合并 mapreduce.task.io.sort.factor(默认 10)个文件,并将产生的文 件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
让每个 MapTask 最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量 小文件产生的随机读取带来的开销。

4.6 ReduceTask 工作机制

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1x67DLUF-1640236200790)(C:\Users\86157\AppData\Local\Temp\1640229095508.png)]

(1)Copy 阶段:ReduceTask 从各个 MapTask 上远程拷贝一片数据,并针对某一片数 据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。

(2)Sort 阶段:在远程拷贝数据的同时,ReduceTask 启动了两个后台线程对内存和磁 盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照 MapReduce 语义,用 户编写 reduce()函数输入数据是按 key 进行聚集的一组数据。为了将 key 相同的数据聚在一 起,Hadoop 采用了基于排序的策略。由于各个 MapTask 已经实现对自己的处理结果进行了 局部排序,因此,ReduceTask 只需对所有数据进行一次归并排序即可。

(3)Reduce 阶段:reduce()函数将计算结果写到 HDFS 上。

ReduceTask 并行度决定机制

回顾:MapTask 并行度由切片个数决定,切片个数由输入文件和切片规则决定。
思考:ReduceTask 并行度由谁决定?

1)设置 ReduceTask 并行度
(个数) ReduceTask 的并行度同样影响整个 Job 的执行并发度和执行效率,但与 MapTask 的并 发数由切片数决定不同,ReduceTask 数量的决定是可以直接手动设置:

// 默认值是 1,手动设置为 4

job.setNumReduceTasks(4);

注意事项:

(1)ReduceTask=0,表示没有Reduce阶段,输出文件个数和Map个数一致。

(2)ReduceTask默认值就是1,所以输出文件个数为一个

(3)如果数据分布不均匀,就有可能在Reduce阶段产生数据倾斜

(4)ReduceTask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全 局汇总结果,就只能有1个ReduceTask。

(5)具体多少个ReduceTask,需要根据集群性能而定。

(6)如果分区数不是1,但是ReduceTask为1,是否执行分区过程。答案是:不执行分区过 程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。不大于1 肯定不执行。

Reduce Join应用

Reduce Join

Map 端的主要工作:为来自不同表或文件的 key/value 对,打标签以区别不同来源的记 录。然后用连接字段作为 key,其余部分和新加的标志作为 value,最后进行输出。 
Reduce 端的主要工作:在 Reduce 端以连接字段作为 key 的分组已经完成,我们只需要 在每一个分组当中将那些来源于不同文件的记录(在 Map 阶段已经打标志)分开,最后进 行合并就 ok 了。 

需求分析:

通过将关联条件作为 Map 输出的 key,将两表满足 Join 条件的数据并携带数据所来源 的文件信息,发往同一个 ReduceTask,在 Reduce 中进行数据的串联。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-golIW3AK-1640235355996)(C:\Users\86157\AppData\Local\Temp\1640235124930.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ztklmemP-1640235355997)(C:\Users\86157\AppData\Local\Temp\1640235140475.png)]

代码实现

创建TableBean类

public class TableBean implements Writable {

    private String id;
    private String pid;
    private int amount;
    private String pname;
    private String flag;

    public TableBean() {
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public String getPid() {
        return pid;
    }

    public void setPid(String pid) {
        this.pid = pid;
    }

    public int getAmount() {
        return amount;
    }

    public void setAmount(int amount) {
        this.amount = amount;
    }

    public String getPname() {
        return pname;
    }

    public void setPname(String pname) {
        this.pname = pname;
    }

    public String getFlag() {
        return flag;
    }

    public void setFlag(String flag) {
        this.flag = flag;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(id);
        out.writeUTF(pid);
        out.writeInt(amount);
        out.writeUTF(pname);
        out.writeUTF(flag);
    }

    @Override
    public String toString() {
        return id + "\t" + pname + "\t" + amount;
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.id = in.readUTF();
        this.pid = in.readUTF();
        this.amount = in.readInt();
        this.pname = in.readUTF();
        this.flag = in.readUTF();
    }
}

编写TableMapper类

public class TableMapper extends Mapper<LongWritable, Text,Text,TableBean> {

    private String fileName;
    private Text outK  = new Text();
    private TableBean outV = new TableBean();

    @Override
    protected void setup(Mapper<LongWritable, Text, Text, TableBean>.Context context) throws IOException, InterruptedException {
        //  初始化 order pd
        FileSplit split = (FileSplit) context.getInputSplit();

        fileName = split.getPath().getName();
    }

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, TableBean>.Context context) throws IOException, InterruptedException {
        //获取一行
        String line = value.toString();
        // 2 判断是哪个文件的
        if (fileName.contains("order")){// 处理的是订单表

            String[] split = line.split("\t");

            // 封装k  v
            outK.set(split[1]);
            outV.setId(split[0]);
            outV.setPid(split[1]);
            outV.setAmount(Integer.parseInt(split[2]));
            outV.setPname("");
            outV.setFlag("order");

        }else {// 处理的是商品表
            String[] split = line.split("\t");

            outK.set(split[0]);
            outV.setId("");
            outV.setPid(split[0]);
            outV.setAmount(0);
            outV.setPname(split[1]);
            outV.setFlag("pd");
        }
        // 写出
        context.write(outK, outV);
    }
}

编写TableReducer类

public class TableReducer extends Reducer<Text, TableBean, TableBean, NullWritable> {
    @Override
    protected void reduce(Text key, Iterable<TableBean> values, Reducer<Text, TableBean, TableBean, NullWritable>.Context context) throws IOException, InterruptedException {
        ArrayList<TableBean> orderBeans = new ArrayList<>();
        TableBean pdBean = new TableBean();

        // 循环遍历
        for (TableBean value : values) {
            if("order".equals(value.getFlag())){
                TableBean tmptableBean = new TableBean();
                try {
                    BeanUtils.copyProperties(tmptableBean,value);
                } catch (IllegalAccessException e) {
                    e.printStackTrace();
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }
                //订单表
//                orderBeans.add(value);
                orderBeans.add(tmptableBean);
            }else {
                //商品表
                try {
                    BeanUtils.copyProperties(pdBean,value);
                } catch (IllegalAccessException e) {
                    e.printStackTrace();
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }
            }
        }
        //循环遍历orderBeans,赋值pdname
        for (TableBean orderBean : orderBeans) {
            orderBean.setPname(pdBean.getPname());
            context.write(orderBean,NullWritable.get());
        }

    }
}

编写 TableDriver 类

public class TableDriver {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Job job = Job.getInstance(new Configuration());

        job.setJarByClass(TableDriver.class);
        job.setMapperClass(TableMapper.class);
        job.setReducerClass(TableReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(TableBean.class);

        job.setOutputKeyClass(TableBean.class);
        job.setOutputValueClass(NullWritable.class);

        FileInputFormat.setInputPaths(job, new Path("D:\\datas\\inputtable"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\datas\\output3"));

        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }

}

1004 小米 4
1001 小米 1
1005 华为 5
1002 华为 2
1006 格力 6
1003 格力 3

缺点:这种方式中,合并的操作是在 Reduce 阶段完成,Reduce 端的处理压力太大,Map 节点的运算负载则很低,资源利用率不高,且在 Reduce 阶段极易产生数据倾斜。

Map Join应用

思考:在 Reduce 端处理过多的表,非常容易产生数据倾斜。怎么办?
在 Map 端缓存多张表,提前处理业务逻辑,这样增加 Map 端业务,减少 Reduce 端数 据的压力,尽可能的减少数据倾斜。

具体办法:采用DistributedCache
(1)在 Mapper 的 setup 阶段,将文件读取到缓存集合中。
(2)在 Driver 驱动类中加载缓存。 //缓存普通文件到 Task 运行节点。

job.addCacheFile(new URI(“file:///e:/cache/pd.txt”)); //如果是集群运行,需要设置 HDFS 路径 job.addCacheFile(new URI(“hdfs://hadoop102:8020/cache/pd.txt”));

先在MapJoinDriver类添加缓存文件

public class MapJoinDriver {
    public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException {
        // 1 获取job信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 2 设置加载jar包路径
        job.setJarByClass(MapJoinDriver.class);
        // 3 关联mapper
        job.setMapperClass(MapJoinMapper.class);
        // 4 设置Map输出KV类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);
        // 5 设置最终输出KV类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);
        // 加载缓存数据
        job.addCacheFile(new URI("file:///D:/A尚硅谷大数据技术之Hadoop3.x/资料/资料/11_input/tablecache/pd.txt"));
        // Map端Join的逻辑不需要Reduce阶段,设置reduceTask数量为0
        job.setNumReduceTasks(0);

        // 6 设置输入输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\A尚硅谷大数据技术之Hadoop3.x\\资料\\资料\\11_input\\inputtable2"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\output8888"));
        // 7 提交
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }

}

在 MapJoinMapper 类中的 setup 方法中读取缓存文件

public class MapJoinMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
    private HashMap<String, String> pdMap = new HashMap<>();
    private Text outK = new Text();
    @Override
    protected void setup(Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        //获取缓存文件,并把文件内容封装到集合pd.txt
        URI[] cacheFiles = context.getCacheFiles();
        //获取输入流
        FileSystem fileSystem = FileSystem.get(context.getConfiguration());

        FSDataInputStream fis = fileSystem.open(new Path(cacheFiles[0]));
        //从流里读数据,瞄准那个文件
        String line;
        BufferedReader reader = new BufferedReader(new InputStreamReader(fis, "UTF-8"));
        while (StringUtils.isNotEmpty(line = reader.readLine())){
            //切割
            String[] fields = line.split("\t");
            //赋值
            pdMap.put(fields[0], fields[1]);
        }
        // 关流
        IOUtils.closeStream(reader);
    }

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        //处理order.txt
        String s = value.toString();
        String[] fields = s.split("\t");
        //获取pid
        String pname = pdMap.get(fields[1]);
        //获取id和订单数量
        outK.set(fields[0] + "\t" + pname + "\t" + fields[2]);
        context.write(outK, NullWritable.get());
    }
}
4.7 数据清洗(ETL)案例

​ “ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取 (Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL 一词较常用在数据仓 库,但其对象并不限于数据仓库。
在运行核心业务 MapReduce 程序之前,往往要先对数据进行清洗,清理掉不符合用户 要求的数据。清理的过程往往只需要运行 Mapper 程序,不需要运行 Reduce 程序。

需求:

​ 去除日志中字段个数小于等于 11 的日志。

编写WebLogMapper类

public class WebLogMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
        //获取一行
        String line = value.toString();
        //ETL
        boolean result = parseLog(line,context);
        if (!result) {
            return;
        }
        //写出
        context.write(value,NullWritable.get());
    }

    private boolean parseLog(String line, Mapper<LongWritable, Text, Text, NullWritable>.Context context) {
        // 1 切割
        // 1.206.126.5 - - [19/Sep/2013:05:41:41 +0000] "-" 400 0 "-" "-"
        String[] fields = line.split(" ");
        // 2 判断一下日志的长度是否大于11
        if (fields.length > 11){
            return true;
        }else {
            return false;
        }
    }
}

编写WebLogDriver

public class WebLogDriver {

    public static void main(String[] args) throws Exception {

        // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[]{"D:\\A尚硅谷大数据技术之Hadoop3.x\\资料\\资料\\11_input\\inputlog", "D:/output11111"};

        // 1 获取job信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2 加载jar包
        job.setJarByClass(LogDriver.class);

        // 3 关联map
        job.setMapperClass(WebLogMapper.class);

        // 4 设置最终输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 设置reducetask个数为0
        job.setNumReduceTasks(0);

        // 5 设置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 6 提交
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}

五、Hadoop数据压缩

5.1压缩概述

1)压缩的好处和坏处

压缩的优点:以减少磁盘 IO、减少磁盘存储空间。 压缩的缺点:增加 CPU 开销。

2)压缩原则

(1)运算密集型的 Job,少用压缩

(2)IO 密集型的 Job,多用压缩

压缩格式Hadoop 自带?算法文件扩展名是否可切片换成压缩格式后,原来的 程序是否需要修改
DEFLATE是,直接使用DEFLATE.deflate和文本处理一样,不需要 修改
Gzip是,直接使用DEFLATE.gz和文本处理一样,不需要 修改
bzip2是,直接使用bzip2.bz2和文本处理一样,不需要 修改
LZO否,需要安装LZO.lzo需要建索引,还需要指定 输入格式
Snappy是,直接使用Snappy.snappy和文本处理一样,不需要 修改

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8879hJH8-1640235355997)(C:\Users\86157\AppData\Local\Temp\1635932082479.png)]

5.2压缩方式选择时重点考虑:

压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否 可以支持切片。

5.3 各个的优点

​ Gzip 压缩
优点:压缩率比较高; 缺点:不支持 Split;压缩/解压速度一般;
Bzip2 压缩 优点:压缩率高;支持 Split; 缺点:压缩/解压速度慢。
Lzo 压缩 优点:压缩/解压速度比较快;支持 Split; 缺点:压缩率一般;想支持切片需要额外创建索引。
Snappy 压缩 优点:压缩和解压缩速度快; 缺点:不支持Split;压缩率一般;

5.4 压缩位置选择

压缩可以在 MapReduce 作用的任意阶段启用。

5.5 压缩配置
Map输出端采用压缩实例
public class WordCountDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        // 1.获取job
        Configuration conf = new Configuration();
        // 开启 map 端输出压缩
		conf.setBoolean("mapreduce.map.output.compress", true);
		// 设置 map 端输出压缩方式
		conf.setClass("mapreduce.map.output.compress.codec", 					BZip2Codec.class,CompressionCodec.class);
		Job job = Job.getInstance(conf);
        // 2.设置jar包路径
        job.setJarByClass(WordCountDriver.class);
        // 3.关联mapper和reduce
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        // 4.设置map输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        // 5.设置最终的输出kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // 6.设置输入的路径
        FileInputFormat.setInputPaths(job, new Path("D:\\input"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\datas\\00011"));
        // 7.提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

Reducer 保持不变 ,Mapper 保持不变

Reduce 输出端采用压缩实例
public class WordCountDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        // 1.获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 2.设置jar包路径
        job.setJarByClass(WordCountDriver.class);
        // 3.关联mapper和reduce
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        // 4.设置map输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        // 5.设置最终的输出kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // 6.设置输入的路径
        FileInputFormat.setInputPaths(job, new Path("D:\\input"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\datas\\00011"));
        // 设置 reduce 端输出压缩开启
		FileOutputFormat.setCompressOutput(job, true);
		// 设置压缩的方式
		FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class); 
        // 7.提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}
六、常见错误及解决方案

1)导包容易出错。尤其 Text 和 CombineTextInputFormat。
2)Mapper 中第一个输入的参数必须是 LongWritable 或者 NullWritable,不可以是 IntWritable. 报的错误是类型转换异常。
3)java.lang.Exception: java.io.IOException: Illegal partition for 13926435656 (4),说明 Partition 和 ReduceTask 个数没对上,调整 ReduceTask 个数。
"));
FileOutputFormat.setOutputPath(job, new Path(“D:\datas\00011”));
// 7.提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}

Reducer 保持不变 ,Mapper 保持不变 

##### Reduce 输出端采用压缩实例

```java
public class WordCountDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        // 1.获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 2.设置jar包路径
        job.setJarByClass(WordCountDriver.class);
        // 3.关联mapper和reduce
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        // 4.设置map输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        // 5.设置最终的输出kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // 6.设置输入的路径
        FileInputFormat.setInputPaths(job, new Path("D:\\input"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\datas\\00011"));
        // 设置 reduce 端输出压缩开启
		FileOutputFormat.setCompressOutput(job, true);
		// 设置压缩的方式
		FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class); 
        // 7.提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}
六、常见错误及解决方案

1)导包容易出错。尤其 Text 和 CombineTextInputFormat。
2)Mapper 中第一个输入的参数必须是 LongWritable 或者 NullWritable,不可以是 IntWritable. 报的错误是类型转换异常。
3)java.lang.Exception: java.io.IOException: Illegal partition for 13926435656 (4),说明 Partition 和 ReduceTask 个数没对上,调整 ReduceTask 个数。
4)如果分区数不是 1,但是 reducetask 为 1,是否执行分区过程。答案是:不执行分区过程。 因为在 MapTask 的源码中,执行分区的前提是先判断 ReduceNum 个数是否大于 1。不大于 1 肯定不执行。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值