首先对于数组规模进行二分,直到规模到k的时候,再进行插入排序。下面是伪代码:
QuickInsertionSort(A,p,r,k)
{
if p<r then
{
if r-p+1<=k then
InsertionSort(A,p,r);
else
{
q <- Partition(A,p,r);
QuickInsertionSort(A,p,q-1,k);
QuickInsertionSort(A,q,r,k);
}
}
}
时间复杂度分析:二分到规模为k时,设深度为h,则:n/2^h=k,解得:k=log(n/k)。而对于k个元素进行插入排序时间复杂度为O(k^2),则总的插入排序时间为:(n/k)*k^2=nk。由于每经过一次划分,代价为n,则log(n/k)层共花费代价为:nlog(n/k),则总的时间复杂度为:O(nk+nlog(n/k))。
对于k的选择,理论上:nk<=nlogn,k越大越好,故k=logn;而在实践中,要考虑一些固定因素,往往通过实验方法获得。