# TruePositive+FalsePostive & F-Measure

1. TruePositive + FalsePostive + FalseNegative + TrueNegative

The illustration of four metrics in Pattern Recognition are as follows:

1)True Positive: A sample is a positve one and is classified as Positive;

2)False Negative: A sample is a positive one and is classified as Negative;

3)True Negative: A sample is a negative one and is classified as Negative;

4)False Negative: A sample is a negative one and is classified as Positive.

Predicted Class Label

P                                       N

___________________________________

Actual Class Label   P       True  Positive(TP)            False Negative(FN)

___________________________________

N       False Positive(FP)           True   Negative(TN)

2. Recall + Precision

Recall: related to the samples with actual label of Positive; it is calculated with the formula:

Recall(%) = TP/(TP+FN)x100%

Precision:related to the samples classified as Positive; it is calculated with the formula:

Precision(%) = TP/(TP+FP)x100%

3. F-Measure

F-Measure is another metric for describe the classification performance of the system. It is calculated through the Recall (R) and Precision (P) rate as follows:

F = {(a*a + 1)P*R}/{a*a(P+R)}

When a = 1, the measure becomes F1-Measure:

F1 = 2P*R/(P+R)

#### 推荐系统评测指标：F-Measure

2015-05-12 15:01:00

#### 准确率 召回率 F-Measure

2016-02-18 11:30:19

#### 系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

2017-04-19 19:46:56

#### 机器学习常见评价指标：AUC、Precision、Recall、F-measure、Accuracy

2017-11-30 16:11:00

#### 机器学习：准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线

2017-04-26 20:56:37

#### F-measure

2014-12-21 09:37:52

#### Weka-读懂TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area,

2015-09-21 17:15:57

#### 显著性目标检测模型评价指标（三）——F-measure

2018-03-19 23:03:03

#### Python作业——Scipy

2018-06-04 00:23:56

#### 评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

2017-10-30 09:49:36