大整数乘法的Karatsuba算法实现

本文介绍了Karatsuba算法作为大整数乘法的快速算法,其时间复杂度为O(n^1.59),优于基本算法的O(n^2)。通过将大整数分解并进行三次递归乘法,实现效率提升。然而,与基于FFT的更快算法相比,Karatsuba算法在实际应用中可能存在内存消耗和速度的问题。
摘要由CSDN通过智能技术生成

    两个整数相乘,使用基本算法,时间复杂度为O(n^2)    ,这对于日趋庞大的数据来说是很慢的,目前比较常见的一种大整数的快速算法是 Karatsuba算法,当然他不是最快的,但是比基本算法要好的多,时间复杂度为O(n^1.59),在密码运算中相差是很大的。

    现在考虑分治算法。取m = (n+1)/2,把x写成10^m*a+b的形式,y写成10^m*c+d的形式,则a, b, c, d都是m位整数(如果不足m位,前面可以补0)。


递归方程为T(n) = 4T(n/2) + O(n),其中系数4为四次乘法ac, bd, bc, ad,附加代价n为最后一个return语句的两次高精度加法。方程的解为T(n) = O(n^2),和暴力乘法没有区别。

Anatolii Karatsuba在1962年提出一个改进方法(并由Knuth改进):用ac和bd计算bc + ad,即:

bc + ad = ac + bd - (a - b) * (c - d)

这样一来,只需要进行三次递归乘法,即递归方程变为了T(n) = 3T(n/2)+O(n),解为T(n) = O(nlog3) = O(n^1.585),比暴力乘法快。

计算整数乘法的最快算法是基于FFT的,它的时间复杂度为O

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值