CNN计算网络各层参数量与FLOPs

29 篇文章 2 订阅
16 篇文章 2 订阅

CNN中经常需要考虑到网络的参数量与计算量等问题,具体的计算方法为:

其中,K是卷积核的大小,Cin核Cout表示输入与输出的通道数,H与W表示特征图的大小。

此外,可以通过python中的stat模块计算与验证,代码:

import torch
import torch.nn as nn
from torchstat import stat

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv = nn.Sequential()
        self.conv.add_module("conv", nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, bias=False, padding=1))
        self.conv.add_module("bn", nn.BatchNorm2d(64))
        # self.conv.add_module("")
        self.fc = nn.Linear(64*224*224,100, bias=True)

    def forward(self, x):
        x = self.conv(x)
        x = x.view(-1, 64*224*224)
        x = self.fc(x)
        return x




model = Net()
stat(model, (3, 224, 224))

输出为:

注意:torchstst的版本需要为0.0.6,安装方法:  pip install torchstat==0.0.6

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值