Elasticsearch做到像mysql这样的表连接Parent-Child实现

比如在mysql中我有两张表,movies和ratings,这两张表依赖movie_id实现关联。
那么我需要在elasticsearch中实现一下两个任务

  • 电影标题为When Will I Be Loved的电影评分的均值是多少
  • 电影评分大于5的电影标题是什么
    可以看出来这两个问题都需要将movies和ratings这两张表表连接以后再进行查询。但是Elasticsearch不支持在查询的时候使用movies.movie_id=ratings.movie_id实现两张表的连接,在Elasticsearch的做法是使用Parent-Child实现定义好父文档与子文档。可以理解为例如movie_id为1的数据在movies表中成为父文档,在ratings中成为子文档。

定义索引结构以及定义父子关系

DELETE /movies_ratings_inde


PUT /movies_ratings_index
{
  "mappings": {
    "properties": {
      "movie_id": {"type": "keyword"},
      "movie_title": {"type": "keyword"}
    }
  }
}


PUT /movies_ratings_index/_mapping
{
  "properties": {
    "rating_score": {"type": "float"},
    "movie_id": {"type": "keyword"}
  }
}


# ratings就是表连接,其中movie是父,rating是子
PUT /movies_ratings_index/_mapping
{
  "properties": {
    "movie_id": {"type": "keyword"},
    "movie_title": {"type": "keyword"},
    "ratings": {
      "type": "join",
      "relations": {
        "movie": "rating"
      }
    }
  }
}

导入数据,我这里父数据定义了两条,movie_id分别是1和2,子数据定义了多个。


POST /movies_ratings_index/_doc/1
{
  "movie_id": "1",
  "movie_title": "When Will I Be Loved",
  "ratings": {
    "name": "movie"
  }
}

POST /movies_ratings_index/_doc/2
{
  "movie_id": "2",
  "movie_title": "When Will I Be Disdained",
  "ratings": {
    "name": "movie"
  }
}


POST /movies_ratings_index/_doc/3?routing=1
{
  "rating_score": 4.5,
  "movie_id": "1",
  "ratings": {
    "name": "rating",
    "parent": "1"
  }
}
POST /movies_ratings_index/_doc/4?routing=1
{
  "rating_score": 6.5,
  "movie_id": "1",
  "ratings": {
    "name": "rating",
    "parent": "1"
  }
}

POST /movies_ratings_index/_doc/5?routing=1
{
  "rating_score": 36.5,
  "movie_id": "1",
  "ratings": {
    "name": "rating",
    "parent": "1"
  }
}
POST /movies_ratings_index/_doc/6?routing=1
{
  "rating_score": 26.5,
  "movie_id": "1",
  "ratings": {
    "name": "rating",
    "parent": "1"
  }
}

POST /movies_ratings_index/_doc/7?routing=1
{
  "rating_score": 16.5,
  "movie_id": "1",
  "ratings": {
    "name": "rating",
    "parent": "1"
  }
}

POST /movies_ratings_index/_doc/8?routing=2
{
  "rating_score": 50,
  "movie_id": "2",
  "ratings": {
    "name": "rating",
    "parent": "2"
  }
}

问题1:使用has_parent,因为我们这里是对父数据的movie_title字段进行筛选数据。

#使用has_parent查询
GET /movies_ratings_index/_search
{
 
  "query": {
    "has_parent": {
      "parent_type": "movie",
      "query": {
        "match": {
          "movie_title": "When Will I Be Loved"
        }
      }
    }
  },
  "aggs": {
    "avg_rating_score": {
      "avg": {
        "field": "rating_score"
      }
    }
  }
}

问题2:使用has_child,因为我们这里是对孩子数据进行筛选。

#使用has_child查询
GET /movies_ratings_index/_search
{
  "query": {
    "has_child": {
      "type": "rating",
      "query": {
        "range": {
          "rating_score": {
            "gt": 6
          }
        }
      }
    }
  },
  "aggs": {
    "movies_with_high_ratings": {
      "terms": {
        "field": "movie_title.keyword",
        "size": 10  // 返回前10个最频繁出现的电影标题
      }
    }
  }
}

到这里能发现,就是说要想在elasticsearch中实现mysql的表连接操作必须要事先定义好父子关系,除此之外还要我这里只提到了两张表之间的关系,那么更多表的连接需要如何操作呢

  • 11
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
Python通过使用`elasticsearch`库和`mysql-connector-python`库可以实现MySQL数据库同步到Elasticsearch的功能。下面是一个300字的回答。 首先,安装所需的库。可以使用以下命令安装`elasticsearch`库和`mysql-connector-python`库: ``` pip install elasticsearch mysql-connector-python ``` 接下来,导入所需的库并连接MySQL数据库和Elasticsearch: ```python import mysql.connector from elasticsearch import Elasticsearch # 连接MySQL数据库 conn = mysql.connector.connect( host="localhost", user="root", password="password", database="mydatabase" ) # 连接Elasticsearch es = Elasticsearch([{'host': 'localhost', 'port': 9200}]) ``` 然后,执行MySQL查询语句来获取数据,并将其插入到Elasticsearch中: ```python # 创建MySQL游标对象 cursor = conn.cursor() # 执行MySQL查询语句 cursor.execute("SELECT * FROM mytable") # 获取查询结果 results = cursor.fetchall() # 将结果插入到Elasticsearch for row in results: document = { 'id': row[0], # 假设MySQL中有一个id列 'name': row[1], # 假设MySQL中有一个name列 # 添加其他需要同步的字段 } es.index(index='myindex', doc_type='mytype', body=document) ``` 最后,关闭MySQL数据库连接Elasticsearch连接: ```python # 关闭MySQL数据库连接 conn.close() # 关闭Elasticsearch连接 es.close() ``` 以上是用Python实现MySQL数据库同步到Elasticsearch的基本步骤。可以根据具体需求对代码进行更改和优化,例如使用配置文件来管理数据库连接信息和Elasticsearch的索引名称等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛右刀薛面

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值