You are given an array of positive and negative integers. If a number n at an index is positive, then move forward n steps. Conversely, if it’s negative (-n), move backward n steps. Assume the first element of the array is forward next to the last element, and the last element is backward next to the first element. Determine if there is a loop in this array. A loop starts and ends at a particular index with more than 1 element along the loop. The loop must be “forward” or “backward’.
Example 1: Given the array [2, -1, 1, 2, 2], there is a loop, from index 0 -> 2 -> 3 -> 0.
Example 2: Given the array [-1, 2], there is no loop.
Note: The given array is guaranteed to contain no element “0”.
Can you do it in O(n) time complexity and O(1) space complexity?
class Solution {
int[] arr;
public boolean circularArrayLoop(int[] nums) {
arr = nums;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 0)
continue;
//two pointers
int j = i, k = i;
while (nums[i] * nums[shift(k)] > 0 && nums[i] * nums[shift(shift(k))] > 0) {
j = shift(j);
k = shift(shift(k));
if (j == k) {
// check for loop with only one element
if (j == shift(j))
break;
return true;
}
}
// loop not found, set all element along the way to 0, not necessary
}
return false;
}
public int shift(int pos) {
return ( pos + arr[pos] + arr.length ) % arr.length;
}
}