647. Palindromic Substrings

Given a string, your task is to count how many palindromic substrings in this string.

The substrings with different start indexes or end indexes are counted as different substrings even they consist of same characters.

Example 1:

Input: "abc"
Output: 3
Explanation: Three palindromic strings: "a", "b", "c".

Example 2:

Input: "aaa"
Output: 6
Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".

Note:
The input string length won’t exceed 1000.

O(n)的时间复杂度。
思路:
先对字符串进行改造(例如原字符串是”bab”,改造后是”#b#a#b#”),接着对改造后的字符串运行Manacher’s Algorithm(“马拉车”算法),得到以s[i]为中心的回文串的半径RL[i](不包括中心。例如”a”的半径就是0;”bab”以”a”为中心,半径就是1),显然,以s[i]为中心,RL[i]为半径的回文串中含有的字回文串数目是(RL[i] + 1) / 2个。最后只要将每个(RL[i] + 1) / 2加和就是结果。

class Solution {
    public int countSubstrings(String s) {
        String rs = "#";
        for(int i = 0; i < s.length(); i++) 
            rs = rs + s.charAt(i) + "#";
        int[] RL = new int[rs.length()];
        int pos = 0, maxRight = 0, count = 0;
        for(int i = 0; i < rs.length(); i++) {
            if(i < maxRight) {
                RL[i] = Math.min(maxRight - i, RL[2 * pos - i]);
            }

            while(i - RL[i] - 1 >= 0 && i + RL[i] + 1 < rs.length() && rs.charAt(i - RL[i] - 1) == rs.charAt(i + RL[i] + 1)) {
                RL[i]++;
            }

            if(i + RL[i] > maxRight) {
                pos = i;
                maxRight = i + RL[i];
            }

            count += (RL[i] + 1) / 2;
        }
        return count;
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值