算法导论-带路径压缩的不相交集合C++实现
//带路径压缩的不相交集合
template<typename Type>
struct Set
{
int m_rank; //秩
Set* m_parent; //父节点
Type* m_data; //数据
};
template<typename Type>
Set<Type>* MakeSet(Type* data)
{
Set<Type>* node = new Set<Type>;
node->m_parent = node;
node->m_rank = 0;
node->m_data = data;
return node;
}
template<typename Type>
void DestroySet(Set<Type>* set)
{
if(set != NULL)
delete set;
}
template<typename Type>
Set<Type>* Union(Set<Type>* x,Set<Type>* y)
{
return Link(FindSet(x),FindSet(y));
}
template<typename Type>
Set<Type>* Link(Set<Type>* x,Set<Type>* y)
{
if(x == NULL || y == NULL)
return x != NULL? x : y;
Set<Type>* node = x;
if(x->m_rank>y->m_rank)
{
y->m_parent = x;
}
else
{
node = y;
x->m_parent = y;
if(x->m_rank == y->m_rank)
y->m_rank++;
}
return node;
}
template<typename Type>
Set<Type>* FindSet(Set<Type>* x)
{
if(x == NULL)
return NULL;
if(x != x->m_parent)
{
x->m_parent = FindSet(x->m_parent); //路径压缩
}
return x->m_parent;
}
template<typename Type>
void PrintSet(Set<Type> *x)
{
if(x != NULL)
printf("data:%p,rank:%d,parent:%p,root:%p\n",x->m_data,x->m_rank,x->m_parent->m_data,FindSet(x)->m_data);
}
int main(int argc, char* argv[])
{
int i=0;
Set<int>* set[20];
int data[20];
for(i=0;i<sizeof(set)/sizeof(set[0]);++i)
{
data[i]=i;
set[i]=MakeSet<int>(data+i);
}
for(i=0;i<sizeof(set)/sizeof(set[0]);i+=2)
{
if(i+2<sizeof(set)/sizeof(set[0]))
{
Union(set[i],set[i+2]);
}
}
for(i=0;i<sizeof(set)/sizeof(set[0]);++i)
PrintSet(set[i]);
for(i=1;i<sizeof(set)/sizeof(set[0]);i+=2)
{
if(i+2<sizeof(set)/sizeof(set[0]))
{
Union(set[i],set[i+2]);
}
}
for(i=0;i<sizeof(set)/sizeof(set[0]);++i)
PrintSet(set[i]);
Union(set[0],set[1]);
for(i=0;i<sizeof(set)/sizeof(set[0]);++i)
PrintSet(set[i]);
for(i=0;i<sizeof(set)/sizeof(set[0]);++i)
{
DestroySet<int>(set[i]);
}
return 0;
}