Python包装器用于缓存

文章展示了如何使用Python装饰器创建一个缓存包装器,以避免重复计算,从而提高执行效率。通过一个代价高昂的数学计算函数`expensive_func`为例,比较了使用缓存和不使用缓存的性能差异,证明了缓存对于优化计算密集型任务的有效性。
摘要由CSDN通过智能技术生成

这里的Python包装器的缓存可以避免重复计算,若存在大量重复计算的函数,则可以大幅度提高执行效率。

import math
import time
def cache(func):
    cache = {}
    def wrapper(*args):
        if args in cache:
            return cache[args]
        result = func(*args)
        cache[args] = result
        return result

    return wrapper

@cache
def expensive_func(x,y):
    return math.cos(x) + (math.sqrt(abs(math.sin(x))) + math.log1p(y))**2 + (math.log(x+y**2) - math.cos(math.tan(x**2)))**2

s = time.time()*1000
for i in range(10000000):
    expensive_func(1, 2)
    expensive_func(3, 4)
e = time.time()*1000
print("time use : {}".format(e - s))


在expensive_func里面编写一个代价非常大的数学计算,如果不使用缓存,也就是把@cache去掉,程序将耗时20多秒。
如果直接跑该代码,可以在1.8秒内运行完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值