在使用Python3处理浮点数时会遇到处理精度的问题,例如:
>>> a = 2019.9102
>>> b = 666.333
>>> a - b
1353.5772000000002
>>> a = 2019.0428
>>> b = 1011.0823
>>> a - b
1007.9604999999999
上面两段代码中 a - b 得到的结果,显然都肉眼可见的存在误差.
一般情况下,可以使用round()方法进行处理,如:
>>> a = 2019.9102
>>> b = 666.333
>>> round(a - b, 4)
1353.5772
四舍五入,并保留到小数点后4位,便可'解决'这个问题,那一大串不需要的数字消失了.
但是round()函数也有个小陷阱,如0.5案例:
>>> a = round(0.4)
>>> b = round(0.5)
>>> c = round(0.6)
>>> a, b, c
(0, 0, 1)
如上,当近似值正好影响了四舍五入的位时,就有可能出现这种情况,本该进的位,结果给舍了...
也就是说,不管你怎么处理,只要最后末尾出现5,就有可能出现问题...
幸好,math模块中的提供了ceil()方法和floor()方法.
对数据进行处理,如下:
>>> import math
>>> a = 87.654321
>>> math.ceil(a)
88
>>> n = 2
>>> math.ceil(a*10**n)/(10**n)
87.66
使用ceil()方法将数字向上取整,默认舍弃所有小数部分,得到88.可以通过移动小数点的方式保留需要数据(n为想要保留的小数点后的位数),得到87.66.
>>> import math
>>> a = 12.345678
>>> math.floor(a)
12
>>> n = 2
>>> math.floor(a*10**n)/(10**n)
12.34
使用floor()方法将数字向下取整,默认舍弃所有小数部分,得到12.可以通过移动小数点的方式保留需要数据(n为想要保留的小数点后的位数),得到12.34.
到这里可以总结一下了:
使用round()进行四舍五入处理也不是不行,但是偶尔会...不那么可靠...所以,如果你的目的只是舍弃不进位的话,那么floor()就稳得一b了,但是想要做到万无一失的四舍五入,可能还是得写一个函数,结合math模块来实现,或者干脆转成字符串切一下,分别处理再组合....函数就不放了,也不是什么难事儿,就是麻烦一些了.