自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 使用Python将JSON数据转换为自定义格式的CSV

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,广泛应用于网络通信。CSV(Comma-Separated Values)是另一种常用的数据格式,用于表示表格数据。CSV格式简单、易于处理且兼容性好。然而,在不同应用场景下,我们可能需要自定义CSV格式,例如更改分隔符或调整列顺序。

2025-01-21 09:57:19 517

原创 使用AI API将自然语言转换为SQL查询的实战指南

这种AI驱动的SQL生成技术在许多领域都有广泛应用。例如,数据分析师可以快速生成报告所需的查询,开发者可以减少编写复杂SQL的时间,业务人员甚至可以直接从数据库中提取他们需要的信息,而不需要依赖于技术团队。如果遇到问题欢迎在评论区交流。

2025-01-20 21:03:31 516

原创 构建基于 OpenAPI 的分层规划代理和 JSON 探索器

在现代软件工程中,构建能够自动交互和调用 API 的智能代理非常有趣,特别是当面对像 OpenAPI 这样复杂的 API 规范时。OpenAPI 是目前非常流行的 API 描述格式,可以帮助开发者标准化接口定义。通过结合 OpenAPI 规范和强大的 LLM (Large Language Model) 技术,我们能创建针对具体 API 的智能代理来简化用户任务。本文介绍如何构建分层规划代理和 JSON 探索器代理,这些代理能够通过 OpenAPI 规范提供的描述自动执行任务,用户只需简单输入需求即可。

2025-01-11 18:52:30 689

原创 使用Dria公共RAG模型进行数据检索的应用指南

Dria是一个开发者平台,提供共享的嵌入库,供开发者贡献和利用。借助Dria的API,可以轻松执行数据检索任务。在这篇文章中,我们将重点介绍如何通过使用Dria的API来创建知识库,并进行数据的添加和检索。

2025-01-11 17:30:03 438

原创 使用RSpace文档加载器将研究笔记导入Langchain

RSpace是一个电子实验室笔记本(ELN),用于管理和记录实验过程及其结果。Langchain是一种处理和分析文本数据的框架,允许用户构建复杂的数据流管道。使用RSpace文档加载器,您可以将RSpace中的研究笔记和文档无缝集成到Langchain中,从而简化数据工作流。

2025-01-11 14:56:01 229

原创 如何通过LangChain使用KoboldAI的API进行AI辅助写作

KoboldAI 提供了一个强大的界面,支持多种AI模型的集成。这些模型可以用于各种写作任务,从生成文本到回答问题。而LangChain是一个用于构建语言模型应用的框架,它能够轻松集成不同的语言模型,包括KoboldAI的API。

2025-01-10 14:55:07 564

原创 {yt.title}“)

如果您在实现中遇到问题,欢迎在评论区交流。

2025-01-10 11:33:51 289

原创 使用VDMS实现大规模视觉数据快速访问与检索

VDMS(Visual Data Management System)是一种高效访问大规模“视觉”数据的存储解决方案。它通过将视觉元数据存储为图形,实现对相关视觉数据的云级搜索,并支持机器友好型的视觉数据增强,提供更快速的访问。

2025-01-09 17:05:29 351

原创 使用SQLite与Python的AI应用开发

SQLite是一个零配置的、事务性SQL数据库引擎。与其他数据库系统不同,SQLite不需要一个单独的数据库服务器进程。它可以作为一个嵌入式库直接链接到应用程序中,因此特别适合用在嵌入式系统和移动设备中。

2025-01-09 15:40:41 272

原创 使用LangChain与SerpAPI集成进行搜索查询

SerpAPI 是一个强大的搜索API,能够处理Google、Bing等搜索引擎的请求。通过与LangChain集成,可以在AI应用中更智能地利用搜索结果。

2025-01-09 14:51:00 306

原创 利用NLP Cloud进行自然语言处理的完整指南

NLP Cloud 提供了一套全面的API,可以进行高级自然语言处理任务,包括文本生成、情感分析、文本嵌入等。该平台的优势在于其强大的模型库和定制化能力,使得开发者可以根据自己的需求选择合适的模型或训练新的模型。

2025-01-09 11:31:57 384

原创 使用 MediaWiki XML Dumps 进行数据处理的实践指南

MediaWiki XML Dumps 是一种包含 wiki 内容的 XML 格式文件,它保存了 wiki 页面及其所有修订版本。这种格式不包含网站相关的数据,如用户账户、图像、编辑日志等。因此,它主要用于内容迁移和数据分析,而不是做完整的数据库备份。

2025-01-09 10:04:01 363

原创 使用Python实现HTML到Markdown文本转换

HTML是Web上的标准标记语言,用于构建网页。然而,在许多应用中,我们需要从网页中提取出包含的文本信息,而不是HTML标记本身。这时,将HTML转换为纯文本显得尤为重要。html2text正是一款为此目的而生的工具,它简单易用且非常高效。

2025-01-09 07:35:34 499

原创 使用Meta的LASER和Faiss进行多语言嵌入和相似度搜索

LASER是Meta AI Research开发的一个用于创建多语言句子嵌入的Python库。它支持超过147种语言,使得跨语言的自然语言处理变得更加简便。该库非常适合需要处理多种语言文本的项目。

2025-01-09 05:34:39 268

原创 使用百度云服务搭建AI应用:从基础到实践

百度云是百度公司提供的一项云存储服务,主要用于存储、管理和分享文件。在云计算日益流行的今天,百度云不仅提供了基本的存储服务,还支持第三方集成和各种AI应用的开发。这其中,百度的Qianfan服务非常值得注意,它为大语言模型(LLMs)、对话模型、嵌入模型和向量存储提供了完善的API接口。

2025-01-09 00:37:49 477

原创 使用 Chroma 启动你的向量存储

Chroma 是一个专注于开发者生产力和幸福感的 AI 原生开源向量数据库。它是 Apache 2.0 许可的,并且无缝集成了 LangChain,使得大规模文本处理和检索变得简单高效。无论是简单的文本嵌入还是复杂的检索任务,Chroma 都能轻松应对。本篇文章将带您从安装到高级使用,逐步了解如何利用 Chroma 启动并管理您的向量存储。

2025-01-08 19:32:50 550

原创 使用LangChain构建智能研究助手

LangChain是一款强大的框架,专注于将语言模型与外部工具和数据源集成。通过LangChain,我们可以结合OpenAI的GPT模型和DuckDuckGo搜索引擎,打造一个能够自动化处理信息搜索和整理的研究助手。本文将通过一个简单的项目实例,展示如何使用LangChain搭建这样的系统。

2025-01-08 17:38:24 532

原创 使用JaguarDB与OpenAI实现RAG的技术指南

检索增强生成(RAG)是一种结合信息检索和语言生成的AI方法,能够利用数据库或知识库中的外部信息来增强生成式AI模型的输出。JaguarDB和OpenAI的结合允许我们打造高效的RAG应用,其中JaguarDB负责强大的数据存储和检索,而OpenAI的模型负责生成智能的自然语言文本。

2025-01-08 15:23:16 1835

原创 使用Astra DB进行RAG(检索增强生成)应用开发

RAG 是一种结合信息检索(IR)和生成式预训练模型(GPT)的技术,目的是在生成响应时结合结构化的背景信息,以提高生成内容的准确性和可靠性。Astra DB 是一个强大的NoSQL数据库,支持高可扩展性和低延迟查询,非常适合用作RAG的后端数据支持。

2025-01-08 13:54:41 358

原创 使用Neo4j AuraDB和LangChain实现LLM驱动的知识图谱生成

知识图谱是一种图结构的数据表示方式,它通过节点和边的关系来描述实体和实体间的关系。在人工智能领域,结合LLM的文本理解能力和图数据库的强大查询能力,可以实现自动化的知识抽取和存储。Neo4j AuraDB是一种全托管的云图数据库,提供高性能的查询能力和可扩展性。而LangChain是一个开源的工具链,旨在帮助开发者构建和部署基于LLM的应用程序。

2025-01-08 00:29:16 472

原创 深入理解Neo4j高级RAG:实现精确嵌入与上下文保留的高级检索策略

在现代信息检索中,如何在精确嵌入和上下文保留之间取得平衡是一大挑战。Neo4j高级RAG(Retrieval-Augmented Generation)提供了一种创新的解决方案,通过实现高级检索策略,以便更好地处理数据。这些策略包括典型的RAG、父检索器、假设性问题和摘要策略。这些方法在Neo4j图形数据库中得到了有效的实现与应用。而不是索引整个文档,创建并索引其摘要。在RAG应用中,同样检索父文档以保持上下文。

2025-01-08 00:12:08 422

原创 深入掌握Astra DB:基于Apache Cassandra的无服务器向量数据库

Astra DB 由 DataStax 提供,是一个无服务器的向量数据库,使用 Apache Cassandra® 构建,支持通过简单易用的 JSON API进行访问。Astra DB 结合了无服务器架构的灵活性和 C* 向量操作的强大功能,特别适用于需要大规模存储和查询复杂数据的AI应用场景。

2025-01-07 22:16:11 559

原创 从ConversationalChain迁移到LCEL:实现更灵活的对话管理

允许我们实现一个简单的对话系统, 通过维护一个对话记忆来保持上下文。然而,它在参数的显式化、线程支持和流处理等方面有一定局限性。LCEL通过引入直接使用会话ID进行记忆管理的等机制,提供了更灵活的对话机制。

2025-01-07 20:10:42 950

原创 如何从工具中流式处理事件——深入解析与实践

流式处理事件在现代AI应用场景中变得越来越重要。它不仅有助于监控模型的实时输出,还可以优化数据处理的效率。通过LangChain的工具接口,你可以在调用模型、检索器或其他可运行对象时访问这些内部事件。

2025-01-07 19:11:47 296

原创 [如何在自定义工具中访问和使用RunnableConfig]

在LangChain中,工具(tools)被视为可运行对象(runnables),它们可以像其他可运行对象一样调用invoke()batch()和stream()等方法。然而,当你编写自定义工具并希望调用其他可运行对象(如聊天模型或检索器)时,可能需要访问当前工具的对象,以便有效地跟踪和配置这些子调用。

2025-01-07 19:04:37 166

原创 使用语义相似度拆分文本的方法

众所周知,传统的文本拆分方法多是基于固定的规则,如按段落、句子或字符数来拆分。这种方法简单易行,但在处理长文本时,可能会忽略上下文之间的语义联系。而通过语义相似度进行文本拆分,可以更好地保持上下文的语义完整性。这种方法在语义分析、文本摘要生成等高级NLP任务中尤为重要。

2025-01-07 18:29:26 1396

原创 使用RunnableConfig在运行时传递秘密给Runnables

在复杂的AI系统中,我们经常需要在运行时使用一些敏感的配置参数,比如API密钥或数据库连接字符串。为了保证这些信息的安全性,我们需要一种机制来传递它们,而不被记录到系统日志中。这就是LangChain提供的的用途。

2025-01-07 18:22:32 265

原创 如何解析YAML输出的实用指南

在语言模型中,编码器和解码器都是由一个个的 Transformer 组件拼接在一起形成的。openAI 的 GPT 大模型的发展历程。提供先进的推理,复杂的指令,更多的创造力。

2025-01-07 14:06:58 293

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除