1. 波函数的统计诠释
\qquad 在量子力学中用波函数 Ψ ( r , t ) \Psi(\boldsymbol r,t) Ψ(r,t) 表征微观粒子的运动状态,或者说,波函数描写了体系的量子态 (quantum state) \text{(quantum\ state)} (quantum state)。
\qquad 为人们所普遍接受的对于波函数的解释是由玻恩提出的,波函数的统计诠释指出: ∣ Ψ ( r , t ) ∣ 2 \vert\Psi(\boldsymbol r,t)\vert^2 ∣Ψ(r,t)∣2 给出了在 t t t 时刻位于 r \boldsymbol r r 处发现这个粒子的概率 。
在空间某点 r \boldsymbol r r 处附近找到粒子的概率该区域的大小有关:
(1)在一个体积元 x → x + d x , y → y + d y , z → z + d z x\to x+\mathrm{d}x,y\to y+\mathrm{d}y,z\to z+\mathrm{d}z x→x+dx,y→y+dy,z→z+dz 内, Ψ ( r , t ) \Psi(\boldsymbol r,t) Ψ(r,t) 可认为是不变的
(2)粒子在该区域内出现的概率正比于体积元的大小 d V = d x d y d z \mathrm{d}V=\mathrm{d}x\mathrm{d}y\mathrm{d}z dV=dxdydz,也就是 ∣ Ψ ( r , t ) ∣ 2 d V \vert\Psi(\boldsymbol r,t)\vert^2\mathrm{d}V ∣Ψ(r,t)∣2dV
(3) ∣ Ψ ( r , t ) ∣ 2 \vert\Psi(\boldsymbol r,t)\vert^2 ∣Ψ(r,t)∣2 表示 t t t 时刻位于 r \boldsymbol r r 处单位体积内粒子出现的概率(假设满足归一性)
取自于Griffiths《量子力学概论》图1.2
假设粒子沿 x x x 轴运动,粒子波函数为 Ψ ( x , t ) \Psi(x,t) Ψ(x,t),那么 ∣ Ψ ( x , t ) ∣ 2 \vert\Psi(x,t)\vert^2 ∣Ψ(x,t)∣2 给出了在 t t t 时刻位于 x x x 处发现这个粒子的概率。
或者更精确地说, ∫ a b ∣ Ψ ( x , t ) ∣ 2 d x = { \displaystyle\int_a^b\vert\Psi(x,t)\vert^2\mathrm{d}x=\{ ∫ab∣Ψ(x,t)∣2dx={在 t t t 时刻发现粒子处于 a a a 和 b b b 之间的概率. } \} }(后文不再具体区分概率与概率密度的概念)
取自于程守洙《普通物理学》图13-24
电子双缝干涉图像,曝光时间: ( a ) 0.01 s ( b ) 0.1 s ( c ) 3 s ( d ) 20 s ( e ) 70 s (a)\ 0.01s\quad(b)\ 0.1s\quad(c)\ 3s\quad(d)\ 20s\quad(e)\ 70s (a) 0.01s(b) 0.1s(c) 3s(d) 20s(e) 70s
随着曝光时间的延长,电子数目逐渐增多,在底片上的分布逐渐形成了干涉图样,显示出电子的波动性
可见,电子在底片上各处出现的概率具有一定的分布
\qquad
2. 态叠加原理
\qquad 量子态叠加原理可以表述为:如果 Ψ 1 , Ψ 2 , ⋯ , Ψ n , ⋯ \Psi_1,\Psi_2,\cdots,\Psi_n,\cdots Ψ1,Ψ2,⋯,Ψn,⋯ 都是体系的可能状态,那么它们的线性叠加态 Ψ = ∑ i c i Ψ i \Psi=\sum_ic_i\Psi_i Ψ=∑iciΨi 也是这个体系的可能状态,处于线性叠加态 Ψ \Psi Ψ 的体系部分地处于态 Ψ 1 , Ψ 2 , ⋯ , Ψ n , ⋯ \Psi_1,\Psi_2,\cdots,\Psi_n,\cdots Ψ1,Ψ2,⋯,Ψn,⋯ 中,相应的概率分别为 ∣ c 1 ∣ 2 , ∣ c 2 ∣ 2 , ⋯ , ∣ c n ∣ 2 , ⋯ \vert c_1\vert^2,\vert c_2\vert^2,\cdots,\vert c_n\vert^2,\cdots ∣c1∣2,∣c2∣2,⋯,∣cn∣2,⋯。
态叠加原理指的是“波函数的线性叠加”,而不是概率的叠加。
\qquad 以电子的双缝衍射为例:
( 1 ) \qquad(1) (1) 用 Ψ 1 \Psi_1 Ψ1 表示粒子穿过缝 1 1 1 狭缝到达屏 S \text{S} S 的状态,用 Ψ 2 \Psi_2 Ψ2 表示粒子穿过缝 2 2 2 狭缝到达屏 S \text{S} S 的状态,用 Ψ \Psi Ψ 表示粒子穿过双缝到达屏 S \text{S} S 的状态。那么, Ψ \Psi Ψ 就可以写为 Ψ 1 \Psi_1 Ψ1 和 Ψ 2 \Psi_2 Ψ2 的线性叠加,即 Ψ = c 1 Ψ 1 + c 2 Ψ 2 \Psi=c_1\Psi_1+c_2\Psi_2 Ψ=c1Ψ1+c2Ψ2。
(
2
)
\qquad(2)
(2) 如果
Ψ
1
\Psi_1
Ψ1 和
Ψ
2
\Psi_2
Ψ2 是体系的可能状态,那么线性叠加态
Ψ
=
c
1
Ψ
1
+
c
2
Ψ
2
\Psi=c_1\Psi_1+c_2\Psi_2
Ψ=c1Ψ1+c2Ψ2 也是这个体系的一个可能状态,此时处于线性叠加态的粒子是既处在态
Ψ
1
\Psi_1
Ψ1,又处在态
Ψ
2
\Psi_2
Ψ2。
取自于程守洙《普通物理学》图13-25
图中的线性叠加态 Ψ = Ψ 1 + Ψ 2 , c 1 = c 2 = 1 \Psi=\Psi_1+\Psi_2,\quad c_1=c_2=1 Ψ=Ψ1+Ψ2,c1=c2=1
如果只开缝1, Ψ = Ψ 1 \Psi=\Psi_1 Ψ=Ψ1(未处于叠加态),其概率密度为 P 1 = ∣ Ψ ∣ 2 = ∣ Ψ 1 ∣ 2 P_1=\vert\Psi\vert^2=\vert\Psi_1\vert^2 P1=∣Ψ∣2=∣Ψ1∣2,如 ( a ) (a) (a) 所示;
如果只开缝2, Ψ = Ψ 2 \Psi=\Psi_2 Ψ=Ψ2(未处于叠加态),其概率密度为 P 2 = ∣ Ψ ∣ 2 = ∣ Ψ 2 ∣ 2 P_2=\vert\Psi\vert^2=\vert\Psi_2\vert^2 P2=∣Ψ∣2=∣Ψ2∣2,如 ( b ) (b) (b) 所示;
如果同时打开两缝,按经典统计理论应该如 ( c ) (c) (c) 所示;而实际上由于量子相干性,处于叠加态中的态 Ψ 1 \Psi_1 Ψ1 和态 Ψ 2 \Psi_2 Ψ2 会相互干涉,其概率密度包含了干涉项,如图 ( d ) (d) (d) 所示
实验可参考《Controlled double-slit electron diffraction》
\qquad 按照态叠加原理,粒子在屏 S \text{S} S 上一点 P \text{P} P 出现的概率密度为:
∣ Ψ ∣ 2 = ∣ c 1 Ψ 1 + c 2 Ψ 2 ∣ 2 = ( c 1 ∗ Ψ 1 ∗ + c 2 ∗ Ψ 2 ∗ ) ( c 1 Ψ 1 + c 2 Ψ 2 ) = ∣ c 1 Ψ 1 ∣ 2 + ∣ c 2 Ψ 2 ∣ 2 + c 1 ∗ c 2 Ψ 1 ∗ Ψ 2 + c 1 c 2 ∗ Ψ 1 Ψ 2 ∗ \qquad\qquad\begin{aligned}\vert\Psi\vert^2&=\vert c_1\Psi_1+c_2\Psi_2\vert^2=(c_1^\ast\Psi_1^\ast+c_2^\ast\Psi_2^\ast)(c_1\Psi_1+c_2\Psi_2)\\&=\vert c_1\Psi_1\vert^2+\vert c_2\Psi_2\vert^2+c_1^\ast c_2\Psi_1^\ast\Psi_2+c_1c_2^\ast\Psi_1\Psi_2^\ast\end{aligned} ∣Ψ∣2=∣c1Ψ1+c2Ψ2∣2=(c1∗Ψ1∗+c2∗Ψ2∗)(c1Ψ1+c2Ψ2)=∣c1Ψ1∣2+∣c2Ψ2∣2+c1∗c2Ψ1∗Ψ2+c1c2∗Ψ1Ψ2∗
\qquad 其中, ∣ c 1 Ψ 1 ∣ 2 \vert c_1\Psi_1\vert^2 ∣c1Ψ1∣2 是粒子穿过缝 1 1 1 出现在 P \text{P} P 点的概率密度, ∣ c 2 Ψ 2 ∣ 2 \vert c_2\Psi_2\vert^2 ∣c2Ψ2∣2 是粒子穿过缝 2 2 2 出现在 P \text{P} P 点的概率密度, c 1 ∗ c 2 Ψ 1 ∗ Ψ 2 c_1^\ast c_2\Psi_1^\ast\Psi_2 c1∗c2Ψ1∗Ψ2 和 c 1 c 2 ∗ Ψ 1 Ψ 2 ∗ c_1c_2^\ast\Psi_1\Psi_2^\ast c1c2∗Ψ1Ψ2∗ 是 Ψ 1 \Psi_1 Ψ1 和 Ψ 2 \Psi_2 Ψ2 的干涉项。
粒子穿过双狭缝后在屏 S \text{S} S 上一点 P \text{P} P 出现的概率密度 ∣ Ψ ∣ 2 \vert\Psi\vert^2 ∣Ψ∣2,一般不等于粒子穿过缝 1 1 1 和缝 2 2 2 到达 P \text{P} P 点的概率密度之和 ∣ c 1 Ψ 1 ∣ 2 + ∣ c 2 Ψ 2 ∣ 2 \vert c_1\Psi_1\vert^2+\vert c_2\Psi_2\vert^2 ∣c1Ψ1∣2+∣c2Ψ2∣2
电子衍射图像的结果也证实了干涉项的存在
\qquad
量子力学中,微观粒子的状态用波函数描写,而决定粒子状态变化的方程是薛定谔方程。
\qquad
3. 薛定谔方程
\qquad 德布罗意认为微观粒子也具有波动性,并将“粒子”与“波”之间建立起联系,即粒子的能量 E E E 和动量 p \boldsymbol p p 与波的频率 ν \nu ν 和波长 λ \lambda λ 之间具有如下关系:
{ E = h ν = ℏ ω ( ℏ = h 2 π ) p = ℏ k ( p = ℏ k = ℏ 2 π λ = h λ ) \qquad\qquad\qquad\begin{cases} \quad E=h\nu=\hbar\omega&(\hbar=\dfrac{h}{2\pi}) \\\\ \quad\boldsymbol p=\hbar\boldsymbol k &(p=\hbar k=\hbar\dfrac{2\pi}{\lambda}=\dfrac{h}{\lambda}) \end{cases} ⎩ ⎨ ⎧E=hν=ℏωp=ℏk(ℏ=2πh)(p=ℏk=ℏλ2π=λh)
\qquad 由上述德布罗意关系可知,与自由粒子相联系的波(因为其频率 ν \nu ν 和波矢 k \boldsymbol{k} k 都不变)是一个平面波。
平面波的频率 ν \nu ν 和波矢 k \boldsymbol{k} k 都不随时间变化
与之对应的是,自由粒子的能量 E E E 和动量 p \boldsymbol p p 也不随时间变化
∙ \quad\bullet\quad ∙频率为 ω \omega ω、相移常数为 k k k、沿 x x x 方向传播的平面波为 Ψ k ( x , t ) = A cos ( k x − ω t ) \Psi_k(x,t)=A\cos(kx-\omega t) Ψk(x,t)=Acos(kx−ωt)
\qquad 将平面波写成复数形式 Ψ k ( x , t ) = A e i ( k x − ω t ) \Psi_k(x,t)=Ae^{i(kx-\omega t)} Ψk(x,t)=Aei(kx−ωt),再分别求 x , t x,t x,t 的偏导,就可以得到以下关系:
{ − i ℏ ∂ ∂ x Ψ k = ℏ k Ψ k i ℏ ∂ ∂ t Ψ k = ℏ ω Ψ k \qquad\qquad\qquad\begin{cases} &\textcolor{brown}{-i\hbar\dfrac{\partial}{\partial x}}\Psi_k=\textcolor{brown}{\hbar k}\Psi_k\\\\ &\textcolor{brown}{i\hbar\dfrac{\partial}{\partial t}}\Psi_k=\textcolor{brown}{\hbar\omega}\Psi_k \end{cases} ⎩ ⎨ ⎧−iℏ∂x∂Ψk=ℏkΨkiℏ∂t∂Ψk=ℏωΨk
也就是说,将算符 − i ℏ ∂ ∂ x -i\hbar\dfrac{\partial}{\partial x} −iℏ∂x∂ 和 i ℏ ∂ ∂ t i\hbar\dfrac{\partial}{\partial t} iℏ∂t∂ 作用在函数 Ψ k \Psi_k Ψk 上,就得到了粒子的动量 p \boldsymbol p p 和能量 E E E。
\qquad
∙
\quad\bullet\quad
∙考虑一般情况,描述自由粒子的平面波为
Ψ
k
(
r
,
t
)
=
A
e
i
(
k
⋅
r
−
ω
t
)
\Psi_k(\boldsymbol r,t)=Ae^{i(\boldsymbol k\cdot\boldsymbol r-\omega t)}
Ψk(r,t)=Aei(k⋅r−ωt)
\qquad 由德布罗意关系,将平面波 Ψ k ( r , t ) = A e i ( k ⋅ r − ω t ) \Psi_k(\boldsymbol r,t)=Ae^{i(\boldsymbol k\cdot\boldsymbol r-\omega t)} Ψk(r,t)=Aei(k⋅r−ωt) 中代表波动性的 ω \omega ω 和 k \boldsymbol k k 替换为代表粒子性的 E E E 和 p \boldsymbol p p,就得到了德布罗意波的表达式:
Ψ ( r , t ) = A e i ℏ ( p ⋅ r − E t ) \qquad\qquad\qquad\textcolor{crimson}{\Psi(\boldsymbol r,t)=Ae^{\frac{i}{\hbar}(\boldsymbol{p}\cdot\boldsymbol{r}-Et)}} Ψ(r,t)=Aeℏi(p⋅r−Et)
\qquad 分别对 Ψ k ( r , t ) \Psi_k(\boldsymbol r,t) Ψk(r,t) 求 r , t \boldsymbol r,t r,t 的偏导,可得到:
{ − i ℏ ∇ Ψ k = ℏ k Ψ k = p Ψ k i ℏ ∂ ∂ t Ψ k = ℏ ω Ψ k = E Ψ k \qquad\qquad\qquad\begin{cases} \quad\textcolor{royalblue}{-i\hbar\nabla}\Psi_k=\textcolor{royalblue}{\hbar\boldsymbol k}\Psi_k=\textcolor{royalblue}{\boldsymbol p}\Psi_k\\\\ \quad \textcolor{royalblue}{i\hbar\dfrac{\partial}{\partial t}}\Psi_k=\textcolor{royalblue}{\hbar\omega}\Psi_k=\textcolor{royalblue}{E}\Psi_k \end{cases} ⎩ ⎨ ⎧−iℏ∇Ψk=ℏkΨk=pΨkiℏ∂t∂Ψk=ℏωΨk=EΨk
\qquad 令 p ^ \textcolor{royalblue}{\hat{\boldsymbol p}} p^ 表示动量算符 − i ℏ ∇ \textcolor{crimson}{-i\hbar\nabla} −iℏ∇,令 E ^ \textcolor{royalblue}{\hat{E}} E^ 表示能量算符 i ℏ ∂ ∂ t \textcolor{crimson}{i\hbar\dfrac{\partial}{\partial t}} iℏ∂t∂,也就是:
{ p ^ 2 = p ^ ⋅ p ^ ⟷ − ℏ 2 ∇ 2 E ^ ⟷ − i ℏ ∂ ∂ t \qquad\qquad\qquad\begin{cases} \quad\hat{\boldsymbol p}^2=\hat{\boldsymbol p}\cdot\hat{\boldsymbol p}&\longleftrightarrow\quad -\hbar^2\nabla^2 \\\\ \quad \hat{E}&\longleftrightarrow\quad -i\hbar\dfrac{\partial}{\partial t} \end{cases} ⎩ ⎨ ⎧p^2=p^⋅p^E^⟷−ℏ2∇2⟷−iℏ∂t∂
\qquad 由经典力学中自由粒子能量与动量之间的关系 E = 1 2 m p 2 E=\dfrac{1}{2m}\boldsymbol p^2 E=2m1p2,将能量和动量分别用算符 E ^ \hat{E} E^ 和 p ^ \hat{\boldsymbol p} p^ 替换再作用到波函数 Ψ ( r , t ) \Psi(\boldsymbol r,t) Ψ(r,t) 上,就得到:
E ^ Ψ = 1 2 m p ^ 2 Ψ \qquad\qquad\qquad\hat E\Psi=\dfrac{1}{2m}\hat{\boldsymbol p}^2\Psi E^Ψ=2m1p^2Ψ
\qquad 也就是自由粒子薛定谔方程: i ℏ ∂ ∂ t Ψ = − ℏ 2 2 m ∇ 2 Ψ i\hbar\dfrac{\partial}{\partial t}\Psi=-\dfrac{\hbar^2}{2m}\nabla^2\Psi iℏ∂t∂Ψ=−2mℏ2∇2Ψ
可以验证德布罗意波 Ψ k ( r , t ) = A e i ℏ ( p ⋅ r − E t ) \Psi_k(\boldsymbol r,t)=Ae^{\frac{i}{\hbar}(\boldsymbol{p}\cdot\boldsymbol{r}-Et)} Ψk(r,t)=Aeℏi(p⋅r−Et) 满足该方程
\qquad 假设粒子在力场中的势能为 V ( r ) V(\boldsymbol r) V(r),此时粒子能量与动量之间的关系为 E = p 2 2 m + V ( r ) E=\dfrac{\boldsymbol p^2}{2m}+V(\boldsymbol r) E=2mp2+V(r)。将能量和动量用算符 E ^ \hat{E} E^ 和 p ^ \hat{\boldsymbol p} p^ 替换再作用到波函数 Ψ ( r , t ) \Psi(\boldsymbol r,t) Ψ(r,t) 上,就得到了薛定谔方程:
i ℏ ∂ ∂ t Ψ = − ℏ 2 2 m ∇ 2 Ψ + V ( r ) Ψ \qquad\qquad\qquad\textcolor{crimson}{i\hbar\dfrac{\partial}{\partial t}\Psi=-\dfrac{\hbar^2}{2m}\nabla^2\Psi+V(\boldsymbol r)\Psi} iℏ∂t∂Ψ=−2mℏ2∇2Ψ+V(r)Ψ
经典力学中总能量 E = p 2 2 m + V ( r ) E=\dfrac{\boldsymbol p^2}{2m}+V(\boldsymbol r) E=2mp2+V(r) 称为哈密顿量,对应的哈密顿算符 H ^ ⟷ − ℏ 2 2 m ∇ 2 + V ( r ) \hat{H}\longleftrightarrow-\dfrac{\hbar^2}{2m}\nabla^2+V(\boldsymbol r) H^⟷−2mℏ2∇2+V(r)
薛定谔方程可以写成算符形式: i ℏ ∂ ∂ t Ψ = H ^ Ψ \textcolor{mediumblue}{i\hbar\dfrac{\partial}{\partial t}\Psi=\hat{H}\Psi} iℏ∂t∂Ψ=H^Ψ,即: i ℏ ∂ ∂ t Ψ ( r , t ) = H ^ Ψ ( r , t ) i\hbar\dfrac{\partial}{\partial t}\Psi(\boldsymbol r,t)=\hat{H}\Psi(\boldsymbol r,t) iℏ∂t∂Ψ(r,t)=H^Ψ(r,t)
\qquad
4. 定态薛定谔方程
\qquad 具有确定能量值的状态称为“定态”,定态波函数的时空变量可以分离。如果势能 V ( r ) V(\boldsymbol r) V(r) 不含时间,采用分离变量法将 Ψ ( r , t ) = ψ ( r ) f ( t ) \Psi(\boldsymbol r,t)=\psi(\boldsymbol r)f(t) Ψ(r,t)=ψ(r)f(t) 代入薛定谔方程:
i ℏ f d f d t = 1 ψ [ − ℏ 2 2 m ∇ 2 ψ + V ( r ) ψ ] \qquad\qquad\qquad\dfrac{i\hbar}{f} \dfrac{\mathrm{d}f}{\mathrm{d}t} =\dfrac{1}{\psi}\left[ -\dfrac{\hbar^2}{2m}\nabla^2\psi+V(\boldsymbol r)\psi \right] fiℏdtdf=ψ1[−2mℏ2∇2ψ+V(r)ψ]
将 Ψ ( r , t ) = ψ ( r ) f ( t ) \Psi(\boldsymbol r,t)=\psi(\boldsymbol r)f(t) Ψ(r,t)=ψ(r)f(t) 代入薛定谔方程 i ℏ ∂ ∂ t Ψ = H ^ Ψ \textcolor{mediumblue}{i\hbar\dfrac{\partial}{\partial t}\Psi=\hat{H}\Psi} iℏ∂t∂Ψ=H^Ψ
⟹ i ℏ d f ( t ) d t ψ ( r ) = f ( t ) H ^ ψ ( r ) \Longrightarrow\qquad i\hbar \dfrac{\mathrm{d}f(t)}{\mathrm{d}t}\psi(\boldsymbol r) =f(t)\hat{H}\psi(\boldsymbol r) ⟹iℏdtdf(t)ψ(r)=f(t)H^ψ(r), 两个边同时除 ψ ( r ) f ( t ) \psi(\boldsymbol r)f(t) ψ(r)f(t)
⟹ i ℏ f ( t ) d f ( t ) d t = 1 ψ ( r ) H ^ ψ ( r ) = E \Longrightarrow\qquad \dfrac{i\hbar}{f(t)}\dfrac{\mathrm{d}f(t)}{\mathrm{d}t}=\dfrac{1}{\psi(\boldsymbol r)}\hat{H}\psi(\boldsymbol r)=E ⟹f(t)iℏdtdf(t)=ψ(r)1H^ψ(r)=E
\qquad 等式的左边只是 t t t 的函数,右边只是 r \boldsymbol r r 的函数,而 t t t 和 r \boldsymbol r r 是相互独立的变量。只有等式两边都等于同一常量时,等式才能被满足。若以 E E E 表示这个常量,那么:
( a ) \qquad(a) (a) 由等式的左边等于 E E E,可得:
E f ( t ) = i ℏ d f ( t ) d t ⟶ f ( t ) = C e − i E ℏ t \qquad\qquad\qquad Ef(t)=i\hbar\dfrac{\mathrm{d}f(t)}{\mathrm{d}t}\quad\longrightarrow\quad \textcolor{royalblue}{f(t)=Ce^{-i\frac{E}{\hbar}t}} Ef(t)=iℏdtdf(t)⟶f(t)=Ce−iℏEt
( b ) \qquad(b) (b) 由等式的右边等于 E E E,可得到定态 (time independent) \text{(time\ independent)} (time independent)薛定谔方程:
− ℏ 2 2 m ∇ 2 ψ ( r ) + V ( r ) ψ ( r ) = E ψ ( r ) \qquad\qquad\qquad\textcolor{crimson}{-\dfrac{\hbar^2}{2m}\nabla^2\psi(\boldsymbol r)+V(\boldsymbol r)\psi(\boldsymbol r) = E\psi(\boldsymbol r)} −2mℏ2∇2ψ(r)+V(r)ψ(r)=Eψ(r)
\qquad 可得到定态薛定谔方程的特解为:
Ψ ( r , t ) = ψ ( r ) e − i E ℏ t \qquad\qquad\qquad\textcolor{royalblue}{\Psi(\boldsymbol r,t)=\psi(\boldsymbol r)e^{-i\frac{E}{\hbar}t}} Ψ(r,t)=ψ(r)e−iℏEt
\qquad 这个波函数的角频率 ω = E ℏ \omega=\frac{E}{\hbar} ω=ℏE 是确定的。根据德布罗意关系, E E E 就是体系处于该波函数所描写状态时的能量。此时的状态为定态 (stationary states) \text{(stationary\ states)} (stationary states),函数 Ψ ( r , t ) = ψ ( r ) e − i E ℏ t \Psi(\boldsymbol r,t)=\psi(\boldsymbol r)e^{-i\frac{E}{\hbar}t} Ψ(r,t)=ψ(r)e−iℏEt 为定态波函数。
在定态中,由于概率密度满足 ∣ Ψ ( r , t ) ∣ 2 = ∣ ψ ( r ) ∣ 2 \vert \Psi(\boldsymbol r,t)\vert^2=\vert \psi(\boldsymbol r)\vert^2 ∣Ψ(r,t)∣2=∣ψ(r)∣2 不依赖时间,计算的时候完全可以去掉 e − i E ℏ t e^{-i\frac{E}{\hbar}t} e−iℏEt,简单地用不含指数时间因子的 ψ ( r ) \psi(\boldsymbol r) ψ(r) 代替 Ψ ( r , t ) \Psi(\boldsymbol r,t) Ψ(r,t) 。在这种意义上,函数 ψ ( r ) \psi(\boldsymbol r) ψ(r) 也可称为“波函数”;而真正的波函数 Ψ ( r , t ) \Psi(\boldsymbol r,t) Ψ(r,t) 总是含有指数时间因子。
\qquad
- 定态是具有确定总能量的态
\qquad 引入哈密顿算符 H ^ = − ℏ 2 2 m ∇ 2 + V ( r ) \hat{H}=-\frac{\hbar^2}{2m}\nabla^2+V(\boldsymbol r) H^=−2mℏ2∇2+V(r),就可将定态薛定谔方程 − ℏ 2 2 m ∇ 2 ψ ( r ) + V ( r ) ψ ( r ) = E ψ ( r ) -\frac{\hbar^2}{2m}\nabla^2\psi(\boldsymbol r)+V(\boldsymbol r)\psi(\boldsymbol r)=E\psi(\boldsymbol r) −2mℏ2∇2ψ(r)+V(r)ψ(r)=Eψ(r) 写成本征方程:
H ^ ψ ( r ) = E ψ ( r ) \qquad\qquad\qquad\textcolor{crimson}{\hat{H}\psi(\boldsymbol r) = E\psi(\boldsymbol r)} H^ψ(r)=Eψ(r)
\qquad 其中,常量 E E E 称为算符 H ^ \hat{H} H^ 的本征值, ψ ( r ) \psi(\boldsymbol r) ψ(r) 称为算符 H ^ \hat{H} H^ 属对应于本征值 E E E 的本征函数。
(
1
)
\qquad(1)
(1) 总能量的期望值
⟨
H
⟩
=
∫
ψ
∗
H
^
ψ
d
r
=
E
∫
ψ
∗
ψ
d
r
=
E
∫
∣
ψ
∣
2
d
r
=
E
∫
∣
Ψ
∣
2
d
r
=
E
\langle H\rangle=\displaystyle\int\psi^\ast\hat{H}\psi\mathrm{d}\boldsymbol{r}=E\int\psi^\ast\psi\mathrm{d}\boldsymbol{r}=E\int\vert\psi\vert^2\mathrm{d}\boldsymbol{r}=E\int\vert\Psi\vert^2\mathrm{d}\boldsymbol{r}=E
⟨H⟩=∫ψ∗H^ψdr=E∫ψ∗ψdr=E∫∣ψ∣2dr=E∫∣Ψ∣2dr=E
(
2
)
\qquad(2)
(2) 又由
H
^
2
ψ
=
H
^
(
H
^
ψ
)
=
H
^
(
E
ψ
)
=
E
(
H
^
ψ
)
=
E
2
ψ
\hat{H}^2\psi =\hat{H}(\hat{H}\psi) = \hat{H}(E\psi)= E(\hat{H}\psi)= E^2\psi
H^2ψ=H^(H^ψ)=H^(Eψ)=E(H^ψ)=E2ψ
⟹ ⟨ H 2 ⟩ = ∫ ψ ∗ H ^ 2 ψ d r = E 2 ∫ ∣ ψ ∣ 2 d r = E 2 ∫ ∣ Ψ ∣ 2 d r = E 2 \qquad\qquad\Longrightarrow\quad\langle H^2\rangle=\displaystyle\int\psi^\ast\hat{H}^2\psi\mathrm{d}\boldsymbol{r}=E^2\int\vert\psi\vert^2\mathrm{d}\boldsymbol{r}=E^2\int\vert\Psi\vert^2\mathrm{d}\boldsymbol{r}=E^2 ⟹⟨H2⟩=∫ψ∗H^2ψdr=E2∫∣ψ∣2dr=E2∫∣Ψ∣2dr=E2
\qquad 总能量的涨落(也就是“方差/标准差”) Δ H = ⟨ H 2 ⟩ − ⟨ H ⟩ 2 = 0 \Delta H=\sqrt{\langle H^2\rangle-\langle H\rangle^2}=0 ΔH=⟨H2⟩−⟨H⟩2=0
\qquad 这就说明每个样本有同样的值,对总能量的每次测量结果都是一个确定的值 E E E
\qquad
- 定态薛定谔方程的一般解是分离变量解的线性组合
\qquad 一般来说,本征方程有一系列(无穷多个)本征值,以 E n E_n En 表示体系能量算符的第 n n n 个本征值, ψ n ( r ) \psi_n(\boldsymbol{r}) ψn(r) 是与 E n E_n En 对应的本征函数,则体系的第 n n n 个定态波函数为:
Ψ n ( r , t ) = ψ n ( r ) e − i E n ℏ t \qquad\qquad\qquad\Psi_n(\boldsymbol r,t) = \psi_n(\boldsymbol r)e^{-i\frac{E_n}{\hbar}t} Ψn(r,t)=ψn(r)e−iℏEnt
\qquad 薛定谔方程的一般解,可以写为这些定态波函数的线性叠加(复数 c n c_n cn 是常系数):
Ψ ( r , t ) = ∑ n c n Ψ n ( r , t ) = ∑ n c n ψ n ( r ) e − i E n ℏ t \qquad\qquad\qquad\Psi(\boldsymbol r,t) = \displaystyle\sum_nc_n\Psi_n(\boldsymbol r,t)= \displaystyle\sum_nc_n\psi_n(\boldsymbol r)e^{-i\frac{E_n}{\hbar}t} Ψ(r,t)=n∑cnΨn(r,t)=n∑cnψn(r)e−iℏEnt
(1)一旦得到了薛定谔方程的“分离变量解”,便可以构造出一般解。
(2)尽管分离变量解 Ψ n ( r , t ) = ψ n ( r ) e − i E n ℏ t \Psi_n(\boldsymbol r,t) = \psi_n(\boldsymbol r)e^{-i\frac{E_n}{\hbar}t} Ψn(r,t)=ψn(r)e−iℏEnt 自身是定态解(即概率和期望值的计算过程不依赖时间,也就是可以用 ψ ( r ) \psi(\boldsymbol r) ψ(r) 代替 Ψ ( r , t ) \Psi(\boldsymbol r,t) Ψ(r,t) 进行计算),但是一般解 Ψ ( r , t ) = ∑ n c n ψ n ( r ) e − i E n ℏ t \Psi(\boldsymbol r,t) = \sum_nc_n\psi_n(\boldsymbol r)e^{-i\frac{E_n}{\hbar}t} Ψ(r,t)=∑ncnψn(r)e−iℏEnt 并不具有这一性质。
例: Ψ ( x , t ) = c 1 ψ 1 ( x ) e − i E 1 ℏ t + c 2 ψ 2 ( x ) e − i E 2 ℏ t \Psi(x,t)=c_1\psi_1(x)e^{-i\frac{E_1}{\hbar}t}+c_2\psi_2(x)e^{-i\frac{E_2}{\hbar}t} Ψ(x,t)=c1ψ1(x)e−iℏE1t+c2ψ2(x)e−iℏE2t,并假设 c n c_n cn 和 ψ n ( x ) \psi_n(x) ψn(x) 为实数,那么
∣ Ψ ( r , t ) ∣ 2 = ( c 1 ψ 1 e − i E 1 ℏ t + c 2 ψ 2 e − i E 2 ℏ t ) ( c 1 ψ 1 e i E 1 ℏ t + c 2 ψ 2 e i E 2 ℏ t ) = c 1 2 ψ 1 2 + c 2 2 ψ 2 2 + c 1 c 2 ψ 1 ψ 2 e i E 1 − E 2 ℏ t + c 1 c 2 ψ 1 ψ 2 e − i E 1 − E 2 ℏ t = c 1 2 ψ 1 2 + c 2 2 ψ 2 2 + 2 c 1 c 2 ψ 1 ψ 2 cos ( E 1 − E 2 ℏ t ) \begin{aligned}\vert \Psi(\boldsymbol r,t)\vert^2&= (c_1\psi_1e^{-i\frac{E_1}{\hbar}t}+c_2\psi_2e^{-i\frac{E_2}{\hbar}t})(c_1\psi_1 e^{i\frac{E_1}{\hbar}t}+c_2\psi_2 e^{i\frac{E_2}{\hbar}t}) \\&=c_1^2\psi_1^2+c_2^2\psi_2^2 + c_1 c_2\psi_1\psi_2e^{i\frac{E_1-E_2}{\hbar}t}+c_1c_2\psi_1\psi_2 e^{-i\frac{E_1-E_2}{\hbar}t} \\ &=c_1^2\psi_1^2+c_2^2\psi_2^2 + 2c_1 c_2\psi_1\psi_2\cos(\textstyle\frac{E_1-E_2}{\hbar}t) \end{aligned} ∣Ψ(r,t)∣2=(c1ψ1e−iℏE1t+c2ψ2e−iℏE2t)(c1ψ1eiℏE1t+c2ψ2eiℏE2t)=c12ψ12+c22ψ22+c1c2ψ1ψ2eiℏE1−E2t+c1c2ψ1ψ2e−iℏE1−E2t=c12ψ12+c22ψ22+2c1c2ψ1ψ2cos(ℏE1−E2t)
这显然不是一个定态,概率密度是以正弦的形式振动。
\qquad
- 波函数随时间的变化 —— 时间演化算符
\qquad 波函数随时间的变化取决于薛定谔方程 i ℏ ∂ ∂ t Ψ ( r , t ) = H ^ Ψ ( r , t ) i\hbar\dfrac{\partial}{\partial t}\Psi(\boldsymbol r,t)=\hat{H}\Psi(\boldsymbol r,t) iℏ∂t∂Ψ(r,t)=H^Ψ(r,t),假设哈密顿量 H ^ \hat{H} H^ 与时间无关,且其本征方程满足:
H ^ ψ n ( r ) = E n ψ n ( r ) , n = 1 , 2 , ⋯ \qquad\qquad\qquad\textcolor{crimson}{\hat{H}\psi_n(\boldsymbol r) = E_n\psi_n(\boldsymbol r)},\quad n=1,2,\cdots H^ψn(r)=Enψn(r),n=1,2,⋯
\qquad 薛定谔方程 i ℏ ∂ ∂ t Ψ ( r , t ) = H ^ Ψ ( r , t ) i\hbar\dfrac{\partial}{\partial t}\Psi(\boldsymbol r,t)=\hat{H}\Psi(\boldsymbol r,t) iℏ∂t∂Ψ(r,t)=H^Ψ(r,t) 是时间 t t t 的一阶微分方程,因此只需给定初始时刻 t 0 = 0 t_0=0 t0=0 的波函数 Ψ ( r , 0 ) \Psi(\boldsymbol{r},0) Ψ(r,0),就可以求出任意时刻 t t t 的波函数 Ψ ( r , t ) \Psi(\boldsymbol{r},t) Ψ(r,t),那么
Ψ ( r , 0 ) = ∑ n c n Ψ n ( r , 0 ) = ∑ n c n ψ n ( r ) \qquad\qquad\qquad\Psi(\boldsymbol{r},0) = \displaystyle\sum_nc_n\Psi_n(\boldsymbol{r},0)= \displaystyle\sum_nc_n\psi_n(\boldsymbol{r}) Ψ(r,0)=n∑cnΨn(r,0)=n∑cnψn(r)
薛定谔方程的一般解为 Ψ ( r , t ) = ∑ n c n Ψ n ( r , t ) = ∑ n c n ψ n ( r ) e − i E n ℏ t \Psi(\boldsymbol{r},t) = \displaystyle\sum_nc_n\Psi_n(\boldsymbol{r},t)= \sum_nc_n\psi_n(\boldsymbol{r})e^{-i\frac{E_n}{\hbar}t} Ψ(r,t)=n∑cnΨn(r,t)=n∑cnψn(r)e−iℏEnt
\qquad 以 Ψ ( r , 0 ) \Psi(\boldsymbol{r},0) Ψ(r,0) 作为初始条件,并引入时间演化算符 U ^ ( t ) = e − i H ^ ℏ t \textcolor{blue}{\hat{U}(t)=e^{-i\frac{\hat{H}}{\hbar}t}} U^(t)=e−iℏH^t,那么
Ψ ( r , t ) = U ^ ( t ) Ψ ( r , 0 ) = e − i H ^ ℏ t Ψ ( r , 0 ) \qquad\qquad\qquad\textcolor{slateblue}{\Psi(\boldsymbol{r},t) = \hat{U}(t)\Psi(\boldsymbol{r},0)}=\textcolor{crimson}{e^{-i\frac{\hat{H}}{\hbar}t}}\Psi(\boldsymbol{r},0) Ψ(r,t)=U^(t)Ψ(r,0)=e−iℏH^tΨ(r,0)
或者表示为 ∣ ψ ( t ) ⟩ = U ^ ( t ) ∣ ψ ( 0 ) ⟩ \textcolor{blue}{\vert\psi(t)\rangle=\hat{U}(t)\vert\psi(0)\rangle} ∣ψ(t)⟩=U^(t)∣ψ(0)⟩
证明过程如下:
由泰勒级数展开式 e A ^ = ∑ k = 0 ∞ A ^ k k ! e^{\hat{A}}=\displaystyle\sum_{k=0}^{\infty}\dfrac{\hat{A}^k}{k!} eA^=k=0∑∞k!A^k,时间演化算符 U ^ ( t ) = e − i H ^ ℏ t = ∑ k = 0 ∞ ( − i t ℏ ) k k ! H ^ k \hat{U}(t)=e^{-i\frac{\hat{H}}{\hbar}t}=\displaystyle\sum_{k=0}^{\infty}\dfrac{\left(-i\frac{t}{\hbar}\right)^k}{k!}\hat{H}^k U^(t)=e−iℏH^t=k=0∑∞k!(−iℏt)kH^k
Ψ ( r , t ) = U ^ ( t ) Ψ ( r , 0 ) = e − i H ^ ℏ t Ψ ( r , 0 ) = e − i H ^ t ℏ ∑ n c n ψ n ( r ) = ∑ k = 0 ∞ ( − i t ℏ ) k k ! H ^ k ∑ n c n ψ n ( r ) = ∑ k = 0 ∞ ( − i t ℏ ) k k ! ∑ n c n H ^ k ψ n ( r ) = ∑ k = 0 ∞ ( − i t ℏ ) k k ! ∑ n c n ( E n ) k ψ n ( r ) = ∑ k = 0 ∞ ( − i t ℏ ) k k ! ( E n ) k ∑ n c n ψ n ( r ) = e − i E n ℏ t ∑ n c n ψ n ( r ) = ∑ n c n ψ n ( r ) e − i E n ℏ t \begin{aligned}\Psi(\boldsymbol{r},t)= \hat{U}(t)\Psi(\boldsymbol{r},0)&=e^{-i\frac{\hat{H}}{\hbar}t}\Psi(\boldsymbol{r},0)\\ &=\textcolor{crimson}{e^{-i\frac{\hat{H}t}{\hbar}}}\sum_nc_n\psi_n(\boldsymbol{r})\\ &=\textcolor{crimson}{\sum_{k=0}^{\infty}\dfrac{\left(-i\frac{t}{\hbar}\right)^k}{k!}\hat{H}^k}\sum_nc_n\psi_n(\boldsymbol{r})\\ &=\sum_{k=0}^{\infty}\dfrac{\left(-i\frac{t}{\hbar}\right)^k}{k!}\sum_nc_n\textcolor{blue}{\hat{H}^k\psi_n(\boldsymbol{r})}\\ &=\sum_{k=0}^{\infty}\dfrac{\left(-i\frac{t}{\hbar}\right)^k}{k!}\sum_nc_n\textcolor{blue}{(E_n)^k\psi_n(\boldsymbol{r})}\\ &=\textcolor{brown}{\sum_{k=0}^{\infty}\dfrac{\left(-i\frac{t}{\hbar}\right)^k}{k!}(E_n)^k}\displaystyle\sum_nc_n\psi_n(\boldsymbol{r})\\ &=\textcolor{brown}{e^{-i\frac{E_n}{\hbar}t}}\sum_nc_n\psi_n(\boldsymbol{r})\\ &=\sum_nc_n\psi_n(\boldsymbol{r})e^{-i\frac{E_n}{\hbar}t}\end{aligned} Ψ(r,t)=U^(t)Ψ(r,0)=e−iℏH^tΨ(r,0)=e−iℏH^tn∑cnψn(r)=k=0∑∞k!(−iℏt)kH^kn∑cnψn(r)=k=0∑∞k!(−iℏt)kn∑cnH^kψn(r)=k=0∑∞k!(−iℏt)kn∑cn(En)kψn(r)=k=0∑∞k!(−iℏt)k(En)kn∑cnψn(r)=e−iℏEntn∑cnψn(r)=n∑cnψn(r)e−iℏEnt
\qquad
主要参考书籍:
[1] Griffiths. 量子力学概论
[2] 钱伯初. 量子力学
[3] 周世勋. 量子力学教程