大模型面试题超全总结【第二节】

【第二节】包括5道试题的详细解读及说明如下:

PS小插图:技术方案标书工具介绍:【巧*书】是一款专为企业打造的高效AI智能写标书工具,通过AI大模型精准解析招标文件,智能生成投标内容,快速制作符合要求的高质量标书。
在这里插入图片描述

第一题.有哪几种SFT方法

SFT(Supervised Fine-Tuning,监督微调)是大模型微调的一种常见方法,以下是几种常见的SFT方法:

  • 全微调(Full Fine-Tuning):对整个预训练模型的所有参数进行微调。这种方法能够充分利用训练数据,使模型更好地适应特定任务,但计算成本较高,需要大量的计算资源和时间。
  • Adapter Tuning:在预训练模型的每一层或某些层中插入一个小型的适配器(Adapter)模块,只训练这些适配器模块的参数,而保持预训练模型的原始参数不变。适配器模块通常由两个全连接层和一个非线性激活函数组成,通过这种方式可以在不改变原始模型结构的情况下,使模型适应新的任务。
  • Prefix Tuning:在预训练模型的输入端添加一个可学习的前缀(Prefix),这个前缀与输入序列一起被送入模型进行处理。在训练过程中,只更新前缀的参数,而预训练模型的参数保持不变。这种方法通过引入额外的可学习参数来引导模型的输出,从而适应新的任务。
  • Prompt Tuning:通过设计特定的提示(Prompt)来引导预训练模型的输出。提示可以是自然语言的模板或指令,通过优化提示的内容,使模型能够更好地理解任务要求并生成符合预期的输出。在训练过程中,只更新提示的参数,而预训练模型的参数保持不变。
  • P-Tuning v1:一种改进的Prompt Tuning方法,通过引入连续的软提示(Soft Prompt)来替代传统的离散提示。软提示是通过可学习的嵌入向量表示的,可以更灵活地引导模型的输出。
  • LoRA(Low-Rank Adaptation):在预训练模型的注意力层中引入低秩矩阵分解,将注意力权重矩阵分解为两个小矩阵的乘积。在训练过程中,只更新这两个小矩阵的参数,而预训练模型的原始参数保持不变。这种方法通过低秩近似来减少需要更新的参数数量,从而降低计算成本。
  • RLHF(Reinforcement Learning from Human Feedback):利用人类反馈的强化学习方法来微调预训练模型。通过让人类对模型的输出进行评价,并根据评价结果调整模型的参数,使模型能够生成更符合人类期望的输出。

在SFT过程中,学习率的设置非常重要。通常将学习率设置为预训练阶段的10%,这样可以取得不错的效果。这是因为预训练模型已经学习到了丰富的语言知识,只需要较小的学习率来微调模型,使其适应新的任务,而不会破坏预训练模型已经学习到的知识。

第二题.什么是LoRA微调

LoRA(Low-Rank Adaptation)是一种高效的微调方法,其核心思想是在原始预训练语言模型(PLM)旁边增加一个旁路,通过降维和升维操作来模拟所谓的内在秩(intrinsic rank)。具体来说,LoRA在预训练模型的注意力层中引入两个小矩阵A和B,其中A是一个降维矩阵,B是一个升维矩阵。在训练过程中,固定预训练模型的参数,只训练矩阵A和B。

LoRA的实现步骤如下:

  1. 模型结构修改:在预训练模型的注意力权重矩阵W中,引入两个小矩阵A和B,使得W = W + BA,其中B是降维矩阵,A是升维矩阵。
  2. 参数初始化:用随机高斯分布初始化矩阵A,用0矩阵初始化矩阵B。这样在训练开始时,旁路矩阵BA为0矩阵,不会对原始模型的输出产生影响。
  3. 训练过程:在训练过程中,只更新矩阵A和B的参数,而预训练模型的参数保持不变。通过这种方式,LoRA能够在不改变预训练模型结构的情况下,有效地适应新的任务。
  4. 输出计算:在模型输出时,将旁路矩阵BA与预训练模型的参数叠加,得到最终的输出。

LoRA的优势在于:

  • 参数高效:只需要训练两个小矩阵A和B,而不需要更新预训练模型的所有参数,大大减少了训练的计算成本和内存占用。
  • 模型性能提升:通过低秩矩阵分解,LoRA能够在保持预训练模型性能的同时,有效地适应新的任务。
  • 易于实现:LoRA的实现相对简单,只需要对预训练模型的注意力层进行少量的修改即可。

第三题. LangChain的常用模块有哪些

LangChain是一个用于构建语言模型应用的框架,提供了许多常用模块来简化开发过程。以下是LangChain的常用模块及其功能:

  • document_loaders(文档加载):用于加载各种格式的文档,如PDF、Word、HTML等。LangChain提供了多种文档加载器,可以方便地将文档内容转换为文本格式,供后续处理使用。
  • text_splitter(文档分块):将加载的文档文本分成合适大小的块。这一步骤对于后续的文本向量化和检索非常重要,可以确保每一块文本都能够被有效地处理和利用。
  • embedding.huggingface(向量化):利用Hugging Face提供的嵌入模型,将文本转换为向量表示。向量化是将文本映射到高维空间中的关键步骤,使得计算机能够处理和比较文本。
  • vectorstores(向量存储):用于存储和管理向量化的文本数据。LangChain支持多种向量存储方式,如FAISS、Pinecone等,可以高效地进行相似性搜索和检索。
  • chain.RetrievalQA(检索问答):结合检索和问答功能,通过检索相关的文本块并利用问答模型生成最终的回答。RetrievalQA是构建智能问答系统的核心模块,能够提高回答的准确性和相关性。

这些模块相互配合,可以实现从文档加载、文本处理、向量化、检索到问答生成的完整流程,为构建高效的语言模型应用提供了强大的支持。

第四题. 大模型训练经常出现一些OOM问题,在现有硬件基础下,有什么性能提升trick

OOM(Out Of Memory,内存不足)是大模型训练中常见的问题,尤其是在硬件资源有限的情况下。以下是一些性能提升的技巧:

  • 混合精度训练:使用混合精度训练(Mixed Precision Training)可以减少内存占用并加速计算。通过使用16位浮点数(FP16)代替32位浮点数(FP32),可以在保持模型精度的同时,减少内存使用量并提高计算效率。
  • 减轻模型参数:通过模型剪枝、量化或知识蒸馏等方法,减少模型的参数量。这不仅可以降低内存占用,还可以提高模型的推理速度。
  • 分布式训练:利用分布式训练技术,将模型和数据分布在多个GPU或机器上进行训练。通过数据并行或模型并行的方式,可以充分利用硬件资源,加速训练过程。
  • 减少批量大小:适当减小批量大小(Batch Size)可以减少每次迭代所需的内存。虽然这可能会对模型的收敛速度产生一定影响,但在硬件资源有限的情况下,是一种有效的解决方案。
  • 增加硬件资源:如果可能的话,增加GPU内存或使用更高性能的硬件设备。例如,使用具有更大显存的GPU或添加更多的GPU进行分布式训练。
  • 数据处理与加载优化:使用数据流水线技术来并行加载和处理数据,减少内存中同时存在的数据量。例如,可以使用异步数据加载、预处理和缓存等技术,提高数据处理的效率。

通过这些技巧,可以在现有硬件基础上有效地缓解OOM问题,提高大模型训练的性能和效率。

第五题.如何让大模型处理更长的文本

大模型在处理长文本时,通常会受到内存和计算资源的限制。以下是一些方法来让大模型能够处理更长的文本:

  • 分块处理:将长文本分成多个小块进行处理,每个块的大小可以根据模型的最大输入长度进行设置。在分块时,可以设置一定的重叠部分,以保证文本的连贯性和上下文信息的完整性。
  • 增加模型参数量:通过增加模型的参数量和复杂化模型架构,提高模型对长文本的捕捉和表达能力。例如,使用更深的网络结构或更大的隐藏层维度,可以增强模型对长距离依赖关系的建模能力。
  • 使用稀疏注意力机制:传统的注意力机制在处理长文本时,计算复杂度会随着序列长度的增加而急剧上升。使用稀疏注意力机制(如滑动窗口注意力、稀疏Transformer等),可以减少计算量并提高模型的效率。
  • 优化内存使用:通过优化模型的内存使用,例如使用梯度检查点(Gradient Checkpointing)技术,可以在训练过程中减少内存占用,从而能够处理更长的文本。
    这些方法可以帮助大模型更好地处理长文本,提高其在实际应用中的表现和效果。

PS小插图:技术方案标书工具介绍:【巧*书】是一款专为企业打造的高效AI智能写标书工具,通过AI大模型精准解析招标文件,智能生成投标内容,快速制作符合要求的高质量标书。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值