Description
给你一个n*m网状的图,每个点可以达到他上下左右四个点。
给你q个询问,每次询问任意两点间的距离。
Sample Input
2 2
2
3
6 4
2
1 1 2 2
1 2 2 1
Sample Output
6
7
这道题整体二分啊,太强了。。。
对于我们每次取一条分割线,假设出发点和起始点再这条直线的两边,那它们之间的最短路径肯定经过这条分割线上的某个节点,你就对于这条分割线上的每个节点做一次dij,然后去更新答案,如果在同一边的就继续二分下去。
你可以每次选择一个比较大的坐标轴做分割线,这样时间复杂度可以到O(nlog n sqrt n)。
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
int _min(int x, int y) {return x < y ? x : y;}
int read() {
int s = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
return s * f;
}
struct node {
int x, d;
friend bool operator < (node a, node b) {return a.d > b.d;}
}; priority_queue<node> qq;
struct edge {
int x, y, c, next;
} e[81000]; int len, last[21000];
struct query {
int x1, y1, x2, y2, opt;
} q[110000], g1[110000], g2[110000]; int ans[110000];
int uu, d[21000], v[21000], gg[21000];
int n, m;
void ins(int x, int y, int c) {
e[++len].x = x; e[len].y = y; e[len].c = c;
e[len].next = last[x]; last[x] = len;
}
bool check(int now, int x1, int y1, int x2, int y2) {
int x = now / m; if(now % m) x++;
int y = now % m; if(y == 0) y = m;
if(x < x1 || x > x2 || y < y1 || y > y2) return 0;
return 1;
}
void dij(int hx, int hy, int x1, int y1, int x2, int y2) {
uu++;
int st = (hx - 1) * m + hy;
d[st] = 0; gg[st] = uu;
node tmp; tmp.x = st, tmp.d = 0;
qq.push(tmp);
while(!qq.empty()) {
node now = qq.top(); qq.pop();
int x = now.x;
if(v[x] == uu) continue; v[x] = uu;
for(int k = last[x]; k; k = e[k].next) {
int y = e[k].y;
if(!check(y, x1, y1, x2, y2)) continue;
if(d[y] > d[x] + e[k].c || gg[y] != uu) {
d[y] = d[x] + e[k].c; gg[y] = uu;
tmp.x = y, tmp.d = d[y], qq.push(tmp);
}
}
}
}
void erfen(int x1, int y1, int x2, int y2, int l, int r) {
if(l > r) return ;
if(x1 == y1 && y1 == y2) {
for(int i = l; i <= r; i++) ans[q[i].opt] = 0;
return ;
}
if(x1 > x2 || y1 > y2) return ;
if(y2 - y1 > x2 - x1) {
int u = (y1 + y2) / 2;
for(int i = x1; i <= x2; i++) {
dij(i, u, x1, y1, x2, y2);
for(int j = l; j <= r; j++) {
int p1 = (q[j].x1 - 1) * m + q[j].y1, p2 = (q[j].x2 - 1) * m + q[j].y2;
ans[q[j].opt] = _min(ans[q[j].opt], d[p1] + d[p2]);
}
} int l1 = 0, l2 = 0;
for(int i = l; i <= r; i++) {
if(q[i].y1 >= y1 && q[i].y1 < u && q[i].y2 >= y1 && q[i].y2 < u) g1[++l1] = q[i];
else if(q[i].y1 <= y2 && q[i].y1 > u && q[i].y2 <= y2 && q[i].y2 > u) g2[++l2] = q[i];
}
for(int i = 1; i <= l1; i++) q[l + i - 1] = g1[i];
for(int i = 1; i <= l2; i++) q[l + l1 + i - 1] = g2[i];
erfen(x1, y1, x2, u - 1, l, l + l1 - 1), erfen(x1, u + 1, x2, y2, l + l1, l + l1 + l2 - 1);
} else {
int u = (x1 + x2) / 2;
for(int i = y1; i <= y2; i++) {
dij(u, i, x1, y1, x2, y2);
for(int j = l; j <= r; j++) {
int p1 = (q[j].x1 - 1) * m + q[j].y1, p2 = (q[j].x2 - 1) * m + q[j].y2;
ans[q[j].opt] = _min(ans[q[j].opt], d[p1] + d[p2]);
}
} int l1 = 0, l2 = 0;
for(int i = l; i <= r; i++) {
if(q[i].x1 >= x1 && q[i].x1 < u && q[i].x2 >= x1 && q[i].x2 < u) g1[++l1] = q[i];
else if(q[i].x1 <= x2 && q[i].x1 > u && q[i].x2 <= x2 && q[i].x2 > u) g2[++l2] = q[i];
}
for(int i = 1; i <= l1; i++) q[l + i - 1] = g1[i];
for(int i = 1; i <= l2; i++) q[l + l1 + i - 1] = g2[i];
erfen(x1, y1, u - 1, y2, l, l + l1 - 1), erfen(u + 1, y1, x2, y2, l + l1, l + l1 + l2 - 1);
}
}
int main() {
n = read(), m = read();
for(int i = 1; i <= n; i++) {
for(int j = 1; j < m; j++) {
int x = read();
ins((i - 1) * m + j, (i - 1) * m + j + 1, x);
ins((i - 1) * m + j + 1, (i - 1) * m + j, x);
}
}
for(int i = 1; i < n; i++) {
for(int j = 1; j <= m; j++) {
int x = read();
ins((i - 1) * m + j, i * m + j, x);
ins(i * m + j, (i - 1) * m + j, x);
}
} int Q = read();
for(int i = 1; i <= Q; i++) q[i].x1 = read(), q[i].y1 = read(), q[i].x2 = read(), q[i].y2 = read(), q[i].opt = i;
memset(ans, 63, sizeof(ans));
erfen(1, 1, n, m, 1, Q);
for(int i = 1; i <= Q; i++) printf("%d\n", ans[i]);
return 0;
}