Good Bye 2017 G.New Year and Original Order 数位DP

Description
定义 S ( x ) S(x) S(x) x x x的各个位数字从小到大排形成的数,前导 0 0 0忽略,求 ∑ i = 1 n ​ S ( i ) \sum_{i=1}^n​S(i) i=1nS(i)


Sample Input
21


Sample Output
195


首先你考虑把每一种数字拆开来考虑贡献。
然后你会发现这样的转移是会做到 O ( 100 n 3 ) O(100n^3) O(100n3)的。。。
因为你要存一个同样的值有多少个,比他小的值有多少个才能计算贡献。
然后就有这样一种方法。
你可以考虑将计算答案的方式改为:
假设有j个数大于等于你现在枚举的数,那么你对于答案的贡献就是1111…(j个1)。
这个很好懂,你举个例子就好了。


#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long LL;
const LL mod = 1e9 + 7;
int _min(int x, int y) {return x < y ? x : y;}
int _max(int x, int y) {return x > y ? x : y;}
int read() {
	int s = 0, f = 1; char ch = getchar();
	while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
	while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
	return s * f;
}

char ss[710];
int lt[710];
LL f[710][710][10][2], hh[710];

LL dfs(int x, int ov, int now, int limit) {
	if(x == 0) return hh[ov];
	if(f[x][ov][now][limit] != -1) return f[x][ov][now][limit];
	int up = 9; LL ans = 0;
	if(limit == 1) up = lt[x];
	for(int i = 0; i <= up; i++) {
		int ff = limit;
		if(i != up) ff = 0;
		(ans += dfs(x - 1, ov + (i >= now), now, ff)) %= mod;
	} f[x][ov][now][limit] = ans;
	return ans;
}

int main() {
	scanf("%s", ss + 1);
	int len = strlen(ss + 1);
	for(int i = 1; i <= len; i++) lt[len - i + 1] = ss[i] - '0';
	hh[1] = 1; for(int i = 2; i <= len; i++) hh[i] = hh[i - 1] * 10LL % mod;
	for(int i = 1; i <= len; i++) (hh[i] += hh[i - 1]) %= mod;
	LL ans = 0;
	memset(f, -1, sizeof(f));
	for(int i = 1; i <= 9; i++) {
		(ans += dfs(len, 0, i, 1)) %= mod;
	} printf("%lld\n", ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值