51nod1261 上升数 DP+数论

48 篇文章 0 订阅
14 篇文章 0 订阅

Description
一个10进制表示的正整数,如果从左到右,每一位的数字都不小于前一位的数字,则被称为上升数。
给出长度N和一个数K,求有多少个长度恰好为N的上升数,是K的倍数。


Sample Input
3 111


Sample Output
9


首先有一个性质大概就是说要把每个数字的贡献分开考虑:
对于你假设有j个大于等于当前num的数,那么它在总和中就会贡献 111... ( j 个 1 ) 111...(j个1) 111...(j1)这么多,你可以举个例子想一想。
然后你可以确定第一位肯定是连续的n个1吗,那你就相当于再选8个形如 111... 111... 111...这样的数。
它明显是有循环节的,你就可以快速求出对于每一个余数有多少种形如 111... 111... 111...这样的数。
一开始的想法有点问题,对于一个相同的余数无法去重。。。
后来看了题解才发现原来是多重集计数 我怎么就不记得这种操作了呢。。。
你设 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]为前i个余数,你用了j个,且当前余数为k的方案数,就可以直接转移了,转移时要用到多重集计数。
有关多重集计数:就是指在一个不同元素个数为k的集合中选出r个元素,允许某一个元素被选多次,询问方案数。
方案数是为 C ( k + r − 1 , r ) C(k+r-1,r) C(k+r1,r) C ( k + r − 1 , k − 1 ) C(k+r-1,k-1) C(k+r1,k1)
证明:原问题相当于选出这样一个形式 x 1 ∗ a 1 , x 2 ∗ a 2 , x 3 ∗ a 3 , . . . , x k ∗ a k {x1*a1,x2*a2,x3*a3,...,xk*ak} x1a1,x2a2,x3a3,...,xkak
其中 a a a为每个元素, x x x为该元素出现的次数,相当于满足: ∑ i = 1 k x i = = r \sum_{i=1}^kxi == r i=1kxi==r,那你就相当于在r个0中塞k-1个一。


#include <cstdio>
#include <cstring>

using namespace std;
typedef long long LL;
LL _min(LL x, LL y) {return x < y ? x : y;}
const LL mod = 1e9 + 7;

LL f[2][9][710];
LL kk[710], inv[10];
int k, gg, plen, p[1500];
int v[710];

LL pow_mod(LL a, LL k) {
	LL ans = 1;
	while(k) {
		if(k & 1) (ans *= a) %= mod;
		(a *= a) %= mod; k /= 2;
	} return ans;
}

LL C(LL n, LL m) {
	LL ans = 1;
	for(LL i = n; i >= n - m + 1; i--) (ans *= i) %= mod;
	(ans *= inv[m]) %= mod;
	return ans;
}

int main() {
	LL n; scanf("%lld", &n);
	scanf("%d", &k);
	LL hh = 0; int pos = -1;
	for(LL i = 1; i <= n; i++) {
		hh = (hh * 10 + 1) % k;
		if(v[hh]) {pos = i; break;}
		v[hh] = i;
		p[++plen] = hh;
	} LL st;
	inv[0] = 1; for(int i = 1; i <= 8; i++) inv[i] = inv[i - 1] * i % mod;
	for(int i = 1; i <= 8; i++) inv[i] = pow_mod(inv[i], mod - 2);
	if(pos == -1) {
		for(int i = 1; i <= plen; i++) kk[p[i]]++;
		st = p[plen];
	} else {
		for(int i = 1; i < v[hh]; i++) kk[p[i]]++;
		n -= v[hh] - 1;
		int dd = plen - v[hh] + 1;
		for(int i = v[hh]; i <= plen; i++) (kk[p[i]] += (LL)n / dd) %= mod;
		n %= dd;
		for(int i = 0; i < n; i++) (kk[p[i + v[hh]]] += 1) %= mod;
		if(n == 0) n = dd;
		st = p[n + v[hh] - 1];
	}
	int now = 0; f[0][0][st] = 1;
	for(int i = 1; i <= k; i++) {
		now ^= 1;
		for(int j = 0; j <= 8; j++) for(int u = 0; u < k; u++) f[now][j][u] = f[now ^ 1][j][u];
		for(int j = 0; j < 8; j++) {
			for(int g = 0; g < k; g++) if(f[now ^ 1][j][g]){
				for(int h = 1; h <= 8 - j; h++) {
					(f[now][j + h][(g + h * (i - 1)) % k] += f[now ^ 1][j][g] * C(kk[i - 1] + h - 1, h) % mod) %= mod;
				}
			}
		}
	} LL ans = 0;
	for(int i = 0; i <= 8; i++) (ans += f[now][i][0]) %= mod;
	printf("%lld\n", ans);
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值