自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 K-近邻算法(三)

七、特征⼯程-特征预处理学习⽬标:了解什么是特征预处理知道归⼀化和标准化的原理及区别1、什么是特征预处理(1) 特征预处理定义scikit-learn的解释provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimator

2021-10-21 23:22:10 188

原创 K-近邻算法(二)

六、案例:鸢尾花种类预测–数据集介绍学习目标:知道sklearn中获取数据集的⽅法知道sklearn中对数据集的划分⽅法本实验介绍了使⽤Python进⾏机器学习的⼀些基本概念。 在本案例中,将使⽤K-Nearest Neighbor(KNN)算法对鸢尾花的种类进⾏分类,并测量花的特征。本案例⽬的:遵循并理解完整的机器学习过程对机器学习原理和相关术语有基本的了解了解评估机器学习模型的基本过程1、案例:鸢尾花种类预测Iris数据集是常⽤的分类实验数据集,由Fisher, 1936收集

2021-10-21 21:51:38 127

原创 K-近邻算法(一)

文章目录一、简介1、概念二、k近邻算法api的初步使用1、目标:2、Scikit-learn的介绍3、 K-近邻算法API4、案例三、距离度量1、距离公式的基本性质2、常见的距离公式四、K值选择说明1、举例说明2、K值选择问题3、近似误差与估计误差五、kd树1、kd树的定义2、树的建立3、最近邻域搜索(Nearest-Neighbor Lookup)一、简介1、概念K-近邻算法(KNN)全称为K Nearest Neighbor,是指如果⼀个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的

2021-10-21 21:46:32 1052

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除