自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 K-近邻算法(三)

七、特征⼯程-特征预处理 学习⽬标: 了解什么是特征预处理 知道归⼀化和标准化的原理及区别 1、什么是特征预处理 (1) 特征预处理定义 scikit-learn的解释 provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimator

2021-10-21 23:22:10 281

原创 K-近邻算法(二)

六、案例:鸢尾花种类预测–数据集介绍 学习目标: 知道sklearn中获取数据集的⽅法 知道sklearn中对数据集的划分⽅法 本实验介绍了使⽤Python进⾏机器学习的⼀些基本概念。 在本案例中,将使⽤K-Nearest Neighbor(KNN)算法对鸢尾花的种类进⾏分类,并测量花的特征。 本案例⽬的: 遵循并理解完整的机器学习过程 对机器学习原理和相关术语有基本的了解 了解评估机器学习模型的基本过程 1、案例:鸢尾花种类预测 Iris数据集是常⽤的分类实验数据集,由Fisher, 1936收集

2021-10-21 21:51:38 180

原创 K-近邻算法(一)

文章目录一、简介1、概念二、k近邻算法api的初步使用1、目标:2、Scikit-learn的介绍3、 K-近邻算法API4、案例三、距离度量1、距离公式的基本性质2、常见的距离公式四、K值选择说明1、举例说明2、K值选择问题3、近似误差与估计误差五、kd树1、kd树的定义2、树的建立3、最近邻域搜索(Nearest-Neighbor Lookup) 一、简介 1、概念 K-近邻算法(KNN)全称为K Nearest Neighbor,是指如果⼀个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的

2021-10-21 21:46:32 1150 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除