最大覆盖位置问题

本文探讨了如何通过数学上的位置建模来解决最佳位置选择问题。不仅关注私人选址,还深入讨论了公众区域选址的复杂性,并提出了两种代表性模型:一是通勤的加权总距离/时间最短的位置;二是距离选址最远的使用者到达选址位置最短的最大服务距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是Rick Church成名作的笔记。作者相信,数学上的位置建模可以由一些度量确定针对一些实物最佳的位置选择问题的解答。比如,可以通过最小化建设和运输成本来得到最佳选址。

除了私人位置的选取,公众区域选址的分析更为复杂。在定位模型中,两个有代表性的是:

  1. 通勤的加权总距离/时间最短的位置
  2. 距离选址最远的使用者到达选址位置最短

最大服务距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值